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Abstract: The nutritional value of mulberry leaves plays a pivotal role in sericulture, directly 

impacting silkworm development and silk production. Traditional methods of assessing leaf 

health rely on manual inspection, which is often subjective, labor-intensive, and impractical for 

large-scale monitoring. This paper introduces a real-time deep learning system for detecting 

nutrient deficiencies in mulberry leaves, combining YOLOv8-based instance segmentation with 

LAB color space clustering. The model efficiently detects and classifies nitrogen, potassium, 

and magnesium deficiencies by analyzing subtle color variations in leaf tissue. Experimental 

results show that the proposed system achieves superior accuracy and precision compared to 

conventional techniques. Moreover, it delivers rapid and scalable performance suitable for 

field-level deployment. To enhance usability, the detection model is integrated into a user-

friendly interface, empowering sericulture farmers to make informed, data-driven decisions for 

improving leaf quality. This automated solution aims to increase productivity, reduce losses, 

and support sustainable silk farming through optimized nutrient management. 

Keywords: YOLOv8, Instance Segmentation, Mulberry Leaves, Nutrient Deficiency 

Detection, LAB Color Space, Deep Learning, Sericulture, Sustainable Agriculture. 
 

Introduction 

Sericulture, the cultivation of silkworms (Bombyx mori) for silk production, is a vital agro-

based industry with a significant role in the global textile economy. Central to this practice is 

the nutritional quality of mulberry leaves (Morus spp.), which directly affects silkworm growth, 

development, and silk yield. Nutrient-rich mulberry leaves promote healthier larvae, improved 

cocoon weights, and higher-quality silk fibers, while deficiencies can lead to stunted growth 

and major economic setbacks for farmers [1]. 

Among essential macronutrients, nitrogen (N), potassium (K), and magnesium (Mg) are 

especially critical for mulberry leaf health. Nitrogen facilitates amino acid and protein synthesis 

essential for larval growth and silk gland development [2]. Potassium is involved in key 

physiological functions such as enzyme activation, osmotic regulation, and stress resistance [3]. 

Magnesium, as a core element of chlorophyll, is indispensable for photosynthesis and thus 

impacts both leaf development and the nutritional content available to silkworms [4]. 

Deficiencies in any of these nutrients have been associated with increased larval mortality, 
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reduced cocoon quality, and poor silk yield [5]. 

Traditionally, nutrient deficiencies in mulberry leaves are diagnosed through manual 

observation—assessing visual symptoms such as generalized chlorosis from nitrogen 

deficiency, leaf edge scorching from potassium deficiency, and interveinal chlorosis linked to 

magnesium deficiency [6]. However, these visual assessments require expertise and are highly 

subjective, limiting their scalability in large-scale sericulture operations. This has led to a 

growing interest in automated, data-driven solutions using artificial intelligence (AI) and deep 

learning [7]. 

Recent advances in machine learning (ML) have proven particularly effective in agricultural 

automation. Deep learning models such as convolutional neural networks (CNNs) and instance 

segmentation architectures like Mask R-CNN and YOLOv8 have demonstrated high accuracy 

in detecting plant anomalies [8]. For example, YOLOv4-based systems achieved 99.99% 

accuracy in identifying plant leaf diseases on the Plant Village dataset [9], while transfer 

learning techniques using models like VGG16 and ResNet reported classification accuracies 

exceeding 98% for crop nutrient deficiencies [10]. 

Further enhancement in classification accuracy has been achieved through color space 

transformation and region-based segmentation. Converting leaf images to the LAB color space 

has shown superior performance in identifying subtle symptoms of nutrient stress compared to 

traditional RGB processing [11]. Additionally, algorithms such as mean shift clustering have 

been used to isolate and segment unhealthy regions, improving classification precision [12]. 

Hybrid approaches are also gaining traction, combining CNN-based feature extraction with 

conventional machine learning classifiers like Random Forests and Support Vector Machines 

(SVMs) to increase model interpretability and robustness [13]. For transparency and 

trustworthiness in decision-making, explainability frameworks like SHapley Additive 

exPlanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME) have been 

applied to visualize and justify model predictions [14]. 

Despite these advancements, challenges remain. Variability in lighting conditions, background 

noise, and environmental factors can impair model performance. Thus, domain adaptation and 

data augmentation strategies are essential to enhance generalization [15]. Furthermore, for real-

world deployment, lightweight architectures with real-time inference capability are crucial to 

meet the practical demands of field-level assessment in sericulture. 

This research addresses these gaps by presenting an AI-powered, real-time nutrient deficiency 

detection system for mulberry leaves, integrating YOLOv8 with color clustering methods. The 

proposed solution aims to improve silkworm nutrition monitoring, reduce economic losses, and 

foster sustainable silk production through efficient and scalable automation. 
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Fig 1. Architecture of YOLOv8 

2. Method 

The system for detecting and classifying nutrient deficiencies in mulberry leaves follows a 

structured workflow, beginning with data preprocessing to clean and normalize raw input data. 

This step ensures consistency and quality, which are crucial for accurate model performance 

[17]. The dataset is then partitioned into training, validation, and test sets, with augmentation 

techniques applied to enhance model generalization and mitigate overfitting [18]. 

A YOLOv8-based instance segmentation model is trained to differentiate between healthy and 

unhealthy leaf regions, while a Random Forest classifier is trained on LAB colour features to 

classify specific nutrient deficiencies, including nitrogen (N), potassium (K), and magnesium 

(Mg) deficiencies [19]. Performance evaluation is conducted using key metrics, including mean 

average precision (mAP), precision, recall, and accuracy. If the results meet the desired 

performance criteria, hyperparameter tuning is applied to further optimize model efficiency 

[20]. 

Finally, the trained model is integrated into a user-friendly interface, allowing users to upload 

leaf images, receive real-time health status predictions, and identify specific deficiencies along 

with affected regions. This streamlined workflow provides a robust and scalable solution for 

advancing sericulture practices and enhancing silk production efficiency [21]. 
 

2.1 Acquisition of Images 

The reliability of data-driven models heavily depends on the availability of high-quality, 

diverse datasets. A well-curated dataset is essential for training robust instance segmentation 

models, ensuring generalization across different conditions [22]. In this study, images of 

healthy and nutrient-deficient mulberry leaves, annotated with specific deficiency labels, were 

sourced from the Keeranagere Chawki Rearing Centre. 

The dataset includes mulberry leaves exhibiting deficiencies in nitrogen (N), phosphorus (P), 

and potassium (K). To ensure comprehensive coverage, the dataset consists of images captured 

under varying environmental conditions, with variations in illumination, resolution, and angles 

to improve model robustness [23]. Figure X illustrates sample images from the dataset, while 

Table 1 presents the distribution of classes and dataset statistics. 
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Fig 2. Flowchart of the model 

2.2 Dataset Augmentation and Preprocessing 

Effective data preprocessing is fundamental for ensuring accurate model training and 

evaluation [26]. The dataset was divided into training (87.76%), validation (8.15%), and test 

(4.08%) sets, as shown in Table 1. To enhance model robustness, data augmentation techniques 

were applied, including rotation, flipping, brightness adjustments, and noise injection, 

effectively increasing dataset diversity and reducing the likelihood of overfitting [27]. These 

augmentation techniques improve the model's ability to generalize to unseen data and enhance 

classification accuracy. 

2.3 Annotation of Images 

Accurate annotation is critical in instance segmentation tasks, as model performance depends 

on precise labeling [27]. The collected mulberry leaf images were annotated using Roboflow, a 

widely used annotation tool for computer vision tasks. Each image was manually labeled using 

instance segmentation, ensuring pixel-level classification for accurate feature extraction [28]. 
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Leaves were classified into two primary categories: ‘healthy’ and ‘unhealthy’, with further 

categorization in subsequent stages. The segmentation process was based on leaf structure and 

visual characteristics, ensuring a high degree of differentiation between classes. Studies 

indicate that precise segmentation improves object detection models’ accuracy by reducing 

misclassification errors [29]. 
 

2.4 YOLOv8 

YOLOv8 (You Only Look Once, version 8) is the latest advancement in the YOLO series, 

designed to perform real-time object detection and instance segmentation with high accuracy 

and efficiency. Unlike Mask R-CNN, which operates in two stages, YOLOv8 follows a single-

stage architecture, where bounding box coordinates, segmentation masks, and class 

probabilities are predicted in a single forward pass. 

YOLOv8 employs a fully convolutional architecture, enabling it to process images in a grid-

based manner, generating multi-scale feature representations for improved detection accuracy. 

This streamlined approach results in: 

 Faster inference speeds compared to Mask R-CNN. 

 Lower computational overhead, making it ideal for real-time deployment. 

 Comparable segmentation accuracy, despite its simplified pipeline. 

By leveraging YOLOv8’s efficiency and scalability, this research aims to integrate high-

performance segmentation capabilities into a real-time nutrient deficiency detection system for 

mulberry leaves. 

 

2.5 Mean Shift Clustering 

Once the best-performing model weights were identified, they were saved as a best.pt 

file and used to segment all unhealthy images in the dataset. The generated segmentation masks 

were then analyzed to extract regions of interest, specifically focusing on unhealthy leaf areas. 

These extracted regions were placed on a black background and stored separately, forming a 

training dataset for the classifier model. The following subsections outline the mean shift 

clustering approach and feature extraction methodology used in this study. 
 

2.5.1 Mean Shift Algorithm 

The Mean Shift algorithm is a non-parametric, unsupervised clustering technique that 

iteratively shifts data points toward densely populated regions in the feature space. Unlike k-

means, which requires a predefined number of clusters, Mean Shift dynamically determines 

cluster locations based on density gradients, making it well-suited for image segmentation tasks 

[35]. 
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In this study, the Mean Shift algorithm was applied to segment unhealthy leaf images and 

identify patterns indicative of nutrient deficiencies. The algorithm operates by moving each 

pixel toward the mean of its neighboring pixels, converging on distinct clusters representing 

homogeneous regions in the image [36]. This approach enhances precision in identifying 

deficiency-affected regions, ensuring that similar colour patterns are accurately grouped for 

analysis. 

One of the key improvements introduced in this study was the use of the LAB colour space for 

image segmentation, rather than the traditional RGB colour space. The LAB colour space 

separates luminance (L) from colour information (A and B), enabling more precise 

segmentation based on subtle colour variations [37]. Unlike RGB, where colour and brightness 

are interdependent, the LAB model allows for independent analysis of chromatic features, 

improving the accuracy of nutrient deficiency detection in mulberry leaves. This differentiation 

significantly enhances the effectiveness of Mean Shift clustering for analysing leaf colour 

patterns [38]. 

Figure 6 presents an overview of the image segmentation task, illustrating the Mean Shift 

clustering process applied to LAB colour space images. 
 

The steps involved in processing the mean shift clustering includes: 

1. Kernel Density Estimation (KDE): The algorithm starts by estimating the probability density 

function (PDF) using a kernel function around each point. 

 

Where: 

 x = current point in feature space 

 xi = data points 

 n= total number of data points 

 h = bandwidth  

 d = number of dimensions 

 K(⋅)= kernel function  
 

2. Mean Shift Vector Formula: The core of the algorithm is computing the mean shift vector, 

which shifts each point toward areas of higher data density. 
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Where: 

 xt = current position of the point 

 xt+1 = new position (after shifting) 

This update continues iteratively until convergence 
 

3. Gaussian Kernel:  

 
 

2.5 Extraction of Colour Features 

Following the Mean Shift segmentation, the mean LAB colour value was computed for each 

identified segment. These values were then stored as triplets of (L, A, B) values, representing 

distinct colour features in the dataset. Using prior knowledge of nutrient deficiency patterns, 

these LAB triplets were systematically recorded in a structured CSV file. 

Each extracted triplet was labelled based on its corresponding ground truth information, 

distinguishing between healthy regions and nutrient-deficient areas. The segmentation results 

were categorized as: 

 "Healthy" for regions unaffected by nutrient deficiencies. 

 "Nitrogen Deficiency" for areas exhibiting light yellow discolouration. 

 "Potassium Deficiency" for regions showing brown scorching and curling at the edges. 

 "Magnesium Deficiency" for segments displaying interveinal chlorosis. 
 

Step 1: RGB to XYZ Conversion 

First, the RGB image is gamma-corrected and transformed into the XYZ colour space using: 

 

Step 2: Normalization with D65 White Point 

 

Step 3: Non-linear Mapping 
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Step 4: XYZ to LAB Conversion 

 

The conversion of leaf images to the LAB color space significantly enhances the model’s 

ability to detect subtle nutrient deficiencies that may not be easily distinguishable in RGB 

format. By separating luminance from chromatic information, LAB provides a more 

perceptually uniform representation of color, allowing for more accurate clustering and 

segmentation of affected regions. This makes it especially effective in identifying early-stage 

symptoms such as yellowing or chlorosis, ultimately improving the reliability of automated 

plant health assessments. 

 

Fig 3. Image Preprocessing 

 

Fig 4. Deficient Leaf Preprocessing 

3. Implementation 

The system was designed with user-friendliness and efficiency in mind, allowing users to 

analyze mulberry leaf health through a simple interface. Users upload a leaf image, which the 

system processes to classify as either healthy or unhealthy. If deficiencies are detected, the 

interface highlights affected regions and provides a detailed breakdown of nutrient issues. 

The backend integrates several technologies. PyTorch was used to train the deep learning 

model, with optimized weights stored in a best.pt file. Streamlit powers the web interface, 

enabling real-time interaction, image upload, and result visualization without requiring 

technical expertise. 

The image processing pipeline begins by converting the uploaded image to the LAB color 

space, which enhances feature separation by isolating lightness from color information. This 

conversion improves the detection of subtle symptoms. The YOLOv8 instance segmentation 

model is then applied to detect unhealthy regions in the leaf. If such regions are identified, they 

are further segmented using the Mean Shift algorithm, which clusters pixels based on color 

similarity in the LAB space. 
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For each identified segment, the mean LAB value is computed and passed to a Random Forest 

classifier, which categorizes the region into: Healthy, Nitrogen Deficiency, Potassium 

Deficiency, or Magnesium Deficiency. The system also calculates the percentage of the leaf 

affected by each deficiency, providing a clear visual and numerical output to the user. 

This integrated pipeline—combining LAB color analysis, YOLOv8 segmentation, and machine 

learning classification—offers an accurate, real-time, and accessible tool for nutrient deficiency 

detection in mulberry leaves. It supports improved decision-making in sericulture by ensuring 

leaf quality, thereby enhancing silkworm productivity and promoting sustainable silk farming 

practices. 

Table 1. Training, testing, and validation data. 

Data Number Batch size Seed 

Training 840 16 42 

Validation 78 16 42 

Testing 39 16 42 

 

For model development and evaluation, the dataset was divided into three subsets: 840 images 

for training, 78 for validation, and 39 for testing. A uniform batch size of 16 was maintained 

throughout all phases to ensure efficient training and memory management. To maintain 

consistency and reproducibility across experiments, a random seed value of 42 was used during 

data loading and shuffling. This setup ensured stable results and allowed for reliable 

performance comparison during model validation dataset and testing dataset while 

implementing. 
 

4. RESULTS AND DISCUSSION 

The YOLOv8 model was selected for deployment due to its superior performance in instance 

segmentation and classification. To evaluate the model’s effectiveness, key performance 

metrics such as mean Average Precision (mAP), Precision, and Recall were used. The mAP 

provides a comprehensive measure of the model's ability to balance precision and recall across 

all classes, where higher values indicate better performance. Precision measures the proportion 

of true positive predictions relative to all positive predictions, reflecting the model’s capability 

to minimize false positives. Recall, also referred to as sensitivity, quantifies the model's ability 

to identify all actual positive instances, where higher values signify fewer false negatives. 

The YOLOv8 model demonstrated exceptional performance, achieving a mean Average 

Precision (mAP) of 99%, Precision of 99.8%, and Recall of 100%. These results confirm the 

model's high accuracy and reliability in classifying mulberry leaves as either healthy or 

unhealthy. A detailed confusion matrix, presented in Figure 10, illustrates the distribution of 

true positives, true negatives, false positives, and false negatives, providing valuable insights 
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into the model’s classification performance. This visualization highlights both the model’s 

strengths and areas for potential improvement, ensuring a robust analysis of classification 

errors. Additionally, the performance evaluation of model training is depicted through graphical 

representations in Figure 11, offering a visual summary of accuracy trends and error rates. 

As outlined in previous sections, the colour features extracted from the segmented regions of 

the images were used to construct a dataset for training machine learning classifiers. These 

classifiers were trained to categorize each LAB triplet into its corresponding nutrient deficiency 

label or identify it as ‘Healthy’. Among the classifiers evaluated, the Random Forest model 

achieved the highest accuracy of 97%, outperforming Gradient Boosting (96%) and Support 

Vector Machine (SVM) (93%). The superior performance of the Random Forest classifier, 

particularly in handling complex feature spaces and minimizing classification errors, led to its 

selection for deployment. Its trained weights were subsequently saved and integrated into the 

application for real-time nutrient deficiency classification. A detailed comparison of classifier 

performance, including their respective accuracy, precision, and recall scores 

The comprehensive evaluation results confirm that the proposed YOLOv8-based instance 

segmentation approach, combined with Random Forest classification, provides an effective and 

accurate system for automated mulberry leaf health assessment. By leveraging deep learning 

for segmentation and machine learning for deficiency classification, this system offers a 

scalable solution for enhancing sericulture practices, improving silkworm nutrition, and 

ultimately boosting silk production efficiency. 

         

Fig 5. YOLOv8 Inference 

 

Fig 6. Mean Shift Clustering 
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Fig 7. Scatter plots of pixel clusters 
 

Table 2. Comparison of classifiers 

 

 

 

 

 

 

 

 

 

 

Fig 8. Results generated through Streamlit Interface 
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Conclusion 

This study presents an AI-powered system for detecting and quantifying nutrient deficiencies in 

mulberry leaves, combining deep learning and traditional machine learning techniques. The 

approach utilizes YOLOv8 for instance segmentation and Random Forest for classification, 

achieving high accuracy in identifying deficiencies such as nitrogen, potassium, and 

magnesium within a single leaf image. The system leverages LAB color space for improved 

robustness, reducing brightness-related errors common in RGB models. 

Performance evaluation showed excellent results, with YOLOv8 achieving 99% precision, 

100% recall, and 99.8% mAP. Mean Shift clustering further enhanced the system's ability to 

segment unhealthy regions based on color similarity. Among tested classifiers, Random Forest 

achieved the best accuracy at 97%, outperforming Gradient Boosting and SVM. 

Beyond sericulture, this method contributes to precision agriculture by offering a scalable, 

automated, and accessible solution for crop health monitoring. It reduces reliance on manual 

inspection, improves classification accuracy, and enables data-driven nutrient management. 

Future improvements include expanding the dataset with field images under varied conditions, 

applying self-supervised learning for adaptability, and deploying the system via mobile or 

drone platforms for real-time farm monitoring. Integrating explainability tools like SHAP or 

LIME could further enhance the transparency and trust in model predictions. 

Overall, this work lays a strong foundation for intelligent agricultural monitoring, promoting 

sustainable practices and improved productivity in the silk industry. 
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