VOL 56: ISSUE 06 - 2025 # A Survey on Vision-Based Techniques for Traffic Monitoring using Vehicle Detection and Counting Mechanism C.Ranjeeth Kumar^{#1}, Dr. R. Naveen^{*2} Assistant Professor (Sr.Gr), IT, Sri Ramakrishna Engineering College, India^{#1}. Associate professor, ECE, Info Institute of Engineering, India^{*2}. Abstract: The Intelligent Transportation System (ITS) provides services related to different modes of transport and traffic management systems with an integration of traffic control centers. Vehicle detection and counting system plays an essential role in Intelligent Transportation System for effective traffic management. Vision-Based investigation for traffic surveillance has been a vital part of ITS. The traffic surveillance in urban environment have become more challenging compared to the highways due to various factors like camera placement, cluttered background, pose variation, object occlusion and illumination changes. This paper provides review on vision-based techniques for detection, tracking and counting system base on the vehicle features. In this survey we classify the dynamic attributes of vehicle with respect to vehicle motion & appearance characteristics, including velocity, direction of movement on a single camera. **Keyword:** Vehicle Detection, Vehicle Tracking, Computer Vision, Counting, ITS. # I. INTRODUCTION The escalation of vehicles in urban areas made traffic surveillance a greater challenge in the medium and large sized cities. The advancements in computer vision, computing and camera technologies have raised the interest in video-based traffic surveillance applications, which has become the key part of intelligent transportation systems (ITS). The existing surveillance system collects traffic flow information that mainly includes traffic parameters and traffic incident detection [1]. The system developed is able to capture vehicles visual appearance and extract more information about them through vehicle detection, tracking mechanism. Traffic count could be obtained through a detection zone. To improve vision-based traffic surveillance systems many efforts have been devoted by various researchers, but they still face many challenges and issues in real traffic scenes for an ITS application. The typical scenes include vehicle occlusion, pose variations, all day surveillance and behavior understanding of a vehicle on a single camera network. The variability in vehicle types, size color and pose limits vehicle tracking to specific scenes [2]. An investigation on vehicle detection, tracking and on-road behavior analysis can be found in [3]. A review on various techniques used in vision-based traffic surveillance is discussed from a computer vision perspective. These techniques include vehicle detection, tracking and counting on single camera. This paper also includes improvements, modifications, highlight the advantages and disadvantages. #### 1. VEHICLE DETECTION The localization of an image or robust vehicle detection is the first step in video processing. The efficiency & accuracy of vehicle detection is of great importance for vehicle tracking, vehicle movement expression, and behavior understanding and is the basis for subsequent processing [3]. The vehicle detection process was divided into appearance based and motion based techniques [1]. The appearance based techniques uses the appearance features like shape, color & texture of the vehicle to detect the vehicle or separate it from the background, whereas the motion based techniques uses the moving characteristic to distinguish vehicles from the stationary background image. #### A) MOTION-BASED FEATURES Motion detection is an important task in computer vision. In traffic scenes, the most common characteristic of interest is whether a vehicle is "moving" since it is typically only the moving vehicles that are of interest (traffic counts, safety, etc.). Motion detection aims to separate moving foreground objects from the static background in the image. The motion cues are used to distinguish moving vehicles from stationary background, it can be classified into: temporal frame differencing [4] that depends on the last two or three consecutive frames, background subtraction [5], which require frame history to build background model and finally optical flow [17] is based on instantaneous pixel speed on image surface. #### i) FRAME DIFFERENCING The pixel-wise difference is computed between two consecutive frames in temporal frame differencing method. The moving foreground regions are determined using a threshold value [4]. Street-parking vehicles were detected using frame differencing in [7], with noise suppression. Motorcycles were detected in [8]. The use of three consecutive frames improves detection as in [4], where dual inter-frame subtraction are calculated and binarized followed by a bitwise AND to extract the moving target region. # ii) BACKGROUND SUBTRACTION Background subtraction methods are the most widely studied and used approach for motion detection. Foreground objects are extracted by calculating the difference by pixel between the current image and a background image [5]. In the simplest case, the background image is constructed by specific known background images, e.g., background averaging method, in which a period of image sequences, are averaged to obtain a background model [9]. However, in real traffic scenes, the background are usually changing; therefore, this kind of method is not suitable for dynamic traffic scenes. Thus, the background is constructed without known background image, which make the following assumptions. - Background is always the most frequently observed - in the image sequence. - The background pixel has the maximum appearance time at a steady state. # a) MEDIAN FILTER In non-recursive median filtering the background is estimated by finding the median value for each pixel from a set of frames stored in a buffer. This technique is based on the assumption that the background pixels will not vary dramatically over a time period. A recursive approximation of the temporal median was proposed in [6]. This technique estimate the median through a simple recursive filter that increases or decreases by one if the input pixel is greater or less than the estimate respectively and it is not changed if it equals. In addition to the high computational complexity of the non-recursive median filtering, its memory requirement is high. In contrast the major strengths of the approximate median filter are its computational efficiency, robustness to noise, and simplicity. #### c) KALMAN FILTER The Kalman filter [10] is a mathematical power tool that plays an important role in computer graphics. It is also known as linear quadratic estimation. The kalman filter make use of a series of measurements observed over time, containing noise and other inaccuracies, and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone. The Kalman filter can make full use of the historical information and reduce the search range of the image, to significantly improve system processing speed. The Kalman filter increases the tracking accuracy and stability # b) SINGLE GAUSSIAN PIXEL DISTRIBUTION Temporal single Gaussian is used to model background recursively, which improve robustness and reduce memory requirement. To achieve more adaptive background model pixels variance was additionally calculated [11]. The model is computed recursively in the form of cumulative running average and standard deviation [12]. Based on the pixel position, each pixel is classified either a background or a foreground pixel. Thus single Gaussian model can be considered as the statistical equivalent of dynamic threshold [12]. This model has limited computational cost; yet it still produces tail effects. #### d) GAUSSIAN MIXTURE MODEL Gaussian mixture model (GMM) was introduced by Chris stauffer and W.E.L Grimson in 1999 [13]. It models each pixel as a mixture of two or more Gaussians temporally with online updated data. These distributions are estimated as either a stable background process or short-term foreground process by evaluating its stability. If the distribution of pixels is stable and if above the threshold, then it is termed as background pixel. The speed and adaption rate of the GMM was improved in [14] through extending the standard update equations, by using fixed number of distributions. An improved GMM model using recursive computation was presented in [15], which update GMM parameters continuously. This method is adaptive to light variations and repetitive clutter with higher computational complexity. ## iii)Optical Flow Optical flow is the instantaneous speed of pixels on the image surface, which corresponds to moving objects in 3-D space. The main idea of optical flow is to match pixels between image frames using temporal and gradient information. In [16], dense optical flow was used to separate merged blobs of vehicles. In [17], optical flow was used with 3-D wireframes for vehicle segmentation. The iterative nature of optical flow calculations provides accurate subpixel motion vectors at the expense of added computational time. Yet, optical flow methods are still popular for vehicle detection since these techniques are less susceptible to occlusion issues. #### B) APPEARANCE- BASED FEATURES The visual information of an object can be categorized into: color, texture, and shape. Prior information is usually employed for modeling when using methods based on these features. The feature extraction method is used to compare the extracted 2-D image features with the true 3-D features in the real world environment. In contrast to motion-based methods, appearance-based methods can detect and recognize stationary objects. #### *i)* FEATURE-BASED TECHNIQUES The visual appearances of the vehicles are characterized using coded representative feature descriptions. A variety of features have been used in vehicle detection such as local symmetry edge operators. It is sensitive to size and illumination variations, thus a more spatial invariance edge based histogram was used in [19]. These simple features evolve into more general and robust features that allow direct detection and classification of vehicles. Scale Invariant Feature Transformation (SIFT) [18], Histogram of Oriented Gradient (HOG) [20] and Haar-like features [23] are extensively used in vehicle detection literature. # a) Scale Invariant Feature Transformation In Scale Invariant Feature Transformation (SIFT) [18] the features are detected through a staged filtering approach, which identifies local edge orientation around stable key points in scale space. The generated features are invariant to image scaling, translation, rotation and also it is partially invariant to illumination changes and affine or 3D projection. In addition to the feature vector, the characteristics scale and orientation of every key point is calculated. It can be used to find correspondence of object points in different frames. ## b) Histogram Of Oriented Gradient The Histogram of Oriented Gradient (HOG) [20] computes the image gradient directional histogram, which is an integrated presentation of gradient and edge information. It was originally proposed to detect pedestrian, then in [21], it was introduced for vehicle detection by using 3-D model surface instead of 2-D grid of cell to generate 3-D histogram of oriented gradient (3-DHOG). A combination of a latent support vector machine (LSVM) and HOG was used in [22] to combines both local and global features of the vehicle as a deformable object model. Illumination and geometric invariance together with the high computational efficiency are the main advantages of this feature. ## c) Haar-Like Features Haar-like features [23] are formed of sum and differences of rectangles over an image patch to describe the grey-level distribution of adjacent regions. The filters used to extract the features consist of two, three or four that can be at any position and scale. The output of the filter is calculated by adding the pixel values for the grey region and white region separately, and then the difference between the two sums is normalized. A Haar feature was used in [24] to detect vehicles and it was employed to train a cascaded Adaboost classifier. The advantage of this feature are it is sensitive to vertical, horizontal and symmetric structure, which make them well suited for real time application. The disadvantage is that it has a high computational efficiency. ## ii) PART – BASED MODEL Part-based detection models divide an object into a number of smaller parts and model the spatial relationships between these parts, have become popular for vehicle detection recently. Vehicles were separated into front, side, and rear parts to improve detection performance in occlusion and at the edge of the camera FOV [3]. The discriminatively trained deformable part model in [25] is used for robust vehicle detection. #### II.VEHICLE TRACKING Vehicle tracking is used to predict vehicle positions in subsequent frames, match vehicles between adjacent frames, and ultimately obtain the trajectory and location for each frame in the camera FOV of the vehicle. Tracking method gets hold of vehicle trajectory through identifying motion dynamic attributes and characteristics to locate its position in every frame [1]. Vehicles tracking can be merged with the detection process or performed separately. The detected vehicles and its correspondence are jointly estimated by updating location iteratively using information obtained from previous frames. In the latter case, vehicle detection is performed in every frame, and data association is used to provide correspondence between vehicles in consecutive frames [3]. Current trends in vehicle tracking can be classified into: region-based (shape or contour), and feature-based tracking. # A) REGION-BASED TRACKING Tracking based on region detects vehicles silhouette as connected regions within rectangular, oval or any simple geometric shape, which can be characterized by area, coordinates, centroids, edges, contour or intensity histogram etc. Data association between region characteristics within consecutive frame is used to perform tracking. In [30] shape based tracking with Kalman filtering were used to match simple region. In [33] graph-based region tracking was used for highway vehicles by finding the maximal weight graph. The disadvantages of this technique are computational complexity and its failure in crowded situation. The length and height of the convex hull were used to track vehicle. In [31] the contour of two vehicles was used to resolve occlusion. Vehicle-contour-tracking method was used in [32] to handle visual clutter and partial occlusions. #### B) FEATURE-BASED TRACKING The feature-based approach is suitable for tracking those targets with small area in the image by compactly representing parts of a vehicle or local areas. The various vehicle features detected are used to perform matching with consecutive frames. The corners and edges were used to represent vehicles in earlier techniques. The combination of corners, edges or interest points with feature descriptors like SIFT [24], HOG [27], [34] and Haar-like [29] are proposed in several techniques for vehicle tracking. Other techniques perform tracking based on color histogram, which is more robust to noise and invariant to vehicle rotation and translation [35].But the main challenge in this technique is to choose appropriate set of features which can effectively represent the moving object (i.e. vehicle). # **III.VEHICLE COUNTING** Vehicle counting methods usually specify an area and check if any vehicle enters this area [36, 37]. Those investigations including vehicle classification extract shape-based features like length, width and area [38] and then use a classifier such as the k nearest neighbor method or a neural network to categorise the vehicles. For counting vehicles, we used only one counting line. We define a line in about the middle three-fifth of the frame where vehicles are expected to be detected. For each vehicle coming towards the camera, two consequent frames exist where in the first frame the vehicle centre is before the line and in the second one; it is on or after the line. It is exactly at this frame that we count the vehicle. We defined a Tracking List containing the centres of vehicles bounding boxes which are before the counting line. The Tracking list items are updated until the vehicles pass the line. Then we count and remove them from the Tracking List. # IV.DISCUSSION ON FUTURE DEVELOPMENT This section will provide a discussion, analyses and perspectives of challenges and future research directions on video-based traffic surveillance. Most of the work achieved so far deal with highway rather than urban environments. The main technical challenge from the application perspective lies in the camera view and operating condition, which impose many additional limitations [3]. Vehicle surveillance systems undergo various difficulties especially in urban traffic scenarios such as road sections and intersection in which dense traffic, vehicle occlusion, pose and orientation variation and camera placement highly affect their performance. In road sections vehicles usually travels in a uni-direction in which heavy traffic and congestion may affect vehicle detection due to slow or temporary stopped vehicles. Vehicle pose and orientation with respect to the camera often varies while moving within intersections due to lane change and turn left, right and round. This will vary the appearance and scale of vehicle within consecutive frames affecting tracking and classification dramatically. All of that will increase the complexity of tracking process and affect the real time performance. Nighttime is a dramatic challenge for traffic surveillance, in which headlight and taillights are used to represent the vehicle. # V. CONCLUSION In this paper, we have provided an extensive review of the state-of-the-art literature addressing computer vision techniques used in video based traffic surveillance and monitoring systems. These systems perform three major operations that are vehicle detection, tracking and behavior understanding. Vehicle detection was divided into two main categories based on vehicle representation, namely, techniques based on motion cues and techniques that employ appearance features. Both techniques can be used to isolate vehicles from the background scene with different computational complexity and detection accuracy. Vehicle tracking was categorized into region and feature based tracking with a discussion on motion and parameter estimation schemes employed like Kalman and Particle filtering. We also provide a detailed summarize on counting of vehicles for traffic monitoring. We believe that, this paper provides a rich bibliography content regarding vehicles surveillance systems, which can provide valuable insight into this important research area and encourage new research. # References - [1] B. Tian, B.T. Morris, M. Tang, Y. Liu, Y. Yao, C. Gou, D. Shen, and S. Tang, "Hierarchical and networked vehicle surveillance in ITS: A survey," IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 2, pp. 557-580, 2015. - [2] Tian, Y. Li, B. Li, and D. Wen, "Rear-view vehicle detection and tracking by Combining multiple parts for complex urban surveillance," IEEE Transactions on Intelligent Transportation Systems, vol. 15, no. 2, pp. 597-606, 2014. - [3] S. Sivaraman, and M.M. Trivedi, "Looking at vehicles on the road: A survey of vision-based vehicle detection, tracking, and behavior analysis," IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 4, pp. 1773-1795, 2013. - [4] Q.L. Li, and J.F. He, "Vehicles detection based on three frame difference method and cross-entropy threshold method," Computer Engineering, vol. 37, no. 4, pp. 172-174, 2011. - [5] S. Gupte, O. Masoud, R. F. K. Martin, and N. P. Papanikolopoulos, "Detection and classification of vehicles," IEEE Trans. Intell. Transp.Syst., vol. 3, no. 1, pp. 37–47, March, 2002. - [6] R. Manikandan, and R. Ramakrishnan, "Video object extraction by using background subtraction techniques for sports applications," Digital Image Processing, vol. 5, no. 9, pp. 435-440, 2013. - [7] K. Park, D. Lee, and Y. Park, "Video-based detection of street parkingviolation", in Proc. International Conference on Image Processing, Computer Vision, and Pattern Recognition(IPCV), 2007, pp. 152-156. [8] P.V. Nguyen, and H.B. Le, "A multi-modal particle filter based motorcycle tracking system", In PRICAI 2008: Trends in Artificial Intelligence, 2008, pp. 819-828. Springer Berlin Heidelberg. [9] R. Cucchiara, C. Grana, M. Piccardi, and A. Prati, "Detecting moving objects, ghosts, and shadows in video streams," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 10, pp. 1337-1342, 2003. - [10] S. Messelodi, C. M. Modena, and M. Zanin, "A computer vision system for the detection and classification of vehicles at urban road intersections," Pattern Anal. Appl., vol. 8, no. 1/2, pp. 17–31, Sep. 2005. - [11] C.R. Wren, A. Azarbayejani, T. Darrell, and A.P. Pentland, "Pfinder: Real-time tracking of the human body," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 780-785, 1997. - [12] Morris, and M. Trivedi, "Improved vehicle classification in long traffic video by cooperating tracker and classifier - modules," IEEE International Conference on Video and Signal Based Surveillance (AVSS), Nov. 2006, pp. 9-9. - [13] Stauffer, and W.E.L. Grimson, "Adaptive background mixture models for real-time tracking," IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, 1999. - [14] S.C. Sen-Ching, and C. Kamath, "Robust techniques for background subtraction in urban traffic video," International - Society for Optics and Photonics in Electronic Imaging, Jan. 2004, pp. 881-892. [15] Z. Zivkovic, and F. van der Heijden, "Efficient adaptive density estimation per image pixel for the task of background subtraction," Pattern recognition letters, vol. 27, no. 7, pp. 773-780, 2006. [16] C.-L. Huang and W.-C. Liao, "A vision-based vehicle identification system," in Proc. Int. Conf. Pattern Recog., 2004, vol. 4, pp. 364-367. [17] Ottlik and H.-H. Nagel, "Initialization of model-based vehicle tracking in video sequences of inner-city intersections," Int. J. Comput. Vis., vol. 80, no. 2, pp. 211–225, Nov. 2008. [18] K.M.A. Yousef, M. Al-Tabanjah, E. Hudaib, and M. Ikrai, "SIFT based automatic number plate recognition," in proc. IEEE 6th International Conference on Information and Communication Systems (ICICS), Apr. 2015, pp. 124-129 [19] T. Gao, Z.G. Liu, W.C. Gao, and J. Zhang, "Moving vehicle tracking based on SIFT active particle choosing," in Advances in Neuro-Information Processing, Jan. 2009, pp. 695-702. Springer Berlin Heidelberg. [20] N. Dalal, and B. Triggs, "Histograms of oriented gradients for human detection," in proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, Jun. 2005, pp. 886-893. [21] N. Buch, J. Orwell, and S.A. Velastin, "3D extended histogram of oriented gradients (3DHOG) for classification of road users in urban scenes," in Proc. of the British Machine Conference, pp. 15-1. - [22] H.T. Niknejad, A. Takeuchi, S. Mita, and D. McAllester, "On road multivehicle tracking using deformable object model and - particle filter with improved likelihood estimation," IEEE Transactions on Intelligent Transportation Systems, vol. 13, - no. 2, pp. 748-758, 2012. - [23] P. Viola, and M. Jones, "Rapid object detection using a boosted cascade of simple features," in proc. of the 2001 - IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001, vol. 1, pp. I-511. - [24] S.M. Elkerdawi, R. Sayed, and M. ElHelw, "Real-time vehicle detection and tracking using Haar-like features and compressive tracking," in 1st Iberian Robotics Conference, Jan. 2014, pp. 381-390. Springer International Publishing. [25] L. Lin, T. Wu, J. Porway, and Z. Xu, "A stochastic graph grammar for compositional object representation and recognition," Pattern Recognition, vol. 42, no. 7, pp. 1297-1307, 2009. [26] Lai and N. H. C. Yung, "A fast and accurate scoreboard algorithm for estimating stationary backgrounds in an image sequence," in Proc. IEEE Int. Symp. Circuits Syst., May 1998, vol. 4, pp. 241–244. [27] S. Agarwal, A. Awan, and D. Roth, "Learning to detect objects in images via a sparse, part-based representation." IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 11, pp. 1475-1490, 2004. [28] C. Szegedy, A. Toshev, and D. Erhan, "Deep neural networks for object detection," in Proc. Adv. Neural Inf. Process. Syst., 2013, pp. 2553-2561. - [29] Y. Freund, "Boosting a weak learning algorithm by majority," Inf. Comput., vol. 121, no. 2, pp. 256–285, Sep. 1995. - [30] N.A. Mandellos, I. Keramitsoglou, and C.T. Kiranoudis, "A background subtraction algorithm for detecting and tracking vehicles," Expert Systems with Applications, vol. 38, no. 3, pp. 1619-1631, 2011. [31] W. Zhang, Q.J. Wu, X. Yang, and X. Fang, "Multilevel framework to detect and handle vehicle occlusion," IEEE Transactions on Intelligent Transportation Systems, vol. 9, no. 1, pp. 161-174, 2008. [32] E.B. Meier, and F. Ade, "Tracking cars in range images using the condensation algorithm," in Proc. IEEE International Conference on Intelligent Transportation Systems, 1999, pp.129-134. [33] J.C. Lai, S.S. Huang, and C.C. Tseng, "Image-based vehicle tracking and classification on the highway," in International Conference on Green Circuits and Systems (ICGCS), Jun. 2010, pp. 666-670. [34] N. Buch, J. Orwell, and S.A. Velastin, "3D extended histogram of oriented gradients (3DHOG) for classification of road users in urban scenes," in Proc. of the British Machine Conference, pp. 15-1. [35] P.L.M. Bouttefroy, A. Bouzerdoum, S.L. Phung, and A. Beghdadi, "Vehicle tracking using projective particle filter," in IEEE 6th International Conference on Advanced Video and Signal Based Surveillance, Sep. 2009, pp. 7-12. [36] Li, S., Yu, H., Zhang, J., et al.: 'Video-based traffic data collection system for multiple vehicle types', IET Intell Transp. Syst., 2013, 8, (2), pp. 164-174 [37] Huang, D.Y., Chen, C.H., Hu, W.C., et al.: 'Feature-based vehicle flow analysis and measurement for a real-time traffic surveillance system', J. Inf. Hiding Multimedia Signal Process., 2012, 3, (3), pp. 279-294 [38] Mithun, N.C., Rashid, N.U., Rahman, S.M.: 'Detection and classification of vehicles from video using multiple time- spatial images', IEEE Trans. Intell. transportation sytems