
Integral representation of differentiable functions and

embedding theorem in variable Sobolev spaces

A.E. Abdullayevab, R.F. Babayevc, R.A. Bandaliyeva,b,1, A.N. Mammadovab

aAzerbaijan University of Architecture and Construction
bInstitute of Mathematics and Mechanics of the Ministry of

Science and Education of the Republic of Azerbaijan, Baku, Azerbaijan
cMingachevir State University, Mingachevir, Azerbaijan

Abstract. In this paper, the authors give an integral representation of

functions from an anisotropic variable Sobolev space. The given integral

representation is similar to the integral representation of functions from the

anisotropic Sobolev space with a constant exponent. Next, we prove the

boundedness of the differentiation operator from anisotropic variable Sobolev

space to variable Lebesgue spaces. In particular, we proved the boundedness

of the average function in variable Lebesgue space under the global log-Hölder
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1 Introduction

The embedding theory of spaces of differentiable functions of several vari-

ables developed as a new direction in mathematics in the 1930s in the works

of Sobolev. This theory studies important connections and relationships of

differential properties of functions in various metrics. In addition to its in-

dependent interest from the point of view of functions, it has numerous and
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effective applications in the theory of partial differential equations (see [20]).

In many problems of mathematical physics and variational calculus it is not

sufficient to deal with the classical solutions of differential equations. It is

necessary to introduce the notion of weak derivatives and to work in the so-

called Sobolev spaces. Suppose that α = (α1, . . . , αn) ∈ Nn
0 is a multi-index

and let |α| = α1 + . . . + αn. Sobolev studied isotropic spaces W
(`)
p (G) of

functions f(x) defined on a domain G ⊂ Rn with the norm∑
|α|≤`

‖Dα‖Lp(G) ,

where p ≥ 1 and ` ∈ N. Sobolev obtained embedding theorems for domains

of n-dimensional spaces, namely theorems on summability to the q-th power

of weak derivatives Dβf with respect to a domain or to manifolds of lower

dimension belonging to it. In subsequent years, embedding theory was inten-

sively developed in various directions by many mathematicians and received

new interesting and important applications(see [4], [16] and [17]).

Variable exponent Lebesgue spaces were first studied by Orlicz in 1931

(see [18]). Since the 1990s, variable exponent Lebesgue spaces and variable

exponent Sobolev spaces have been used in a variety of fields, the most im-

portant of which is the mathematical modeling of electrorheological fluids.

In 1997, the variable exponent Lebesgue spaces was applied to the study

of image processing. Namely, in image reconstruction, the variable expo-

nent interpolation technique can be used to obtain a smoother image. For

the theory and applications of variable exponent Lebesgue spaces and vari-

able exponent Sobolev spaces, see [5], [7], [10], [12], [14], [15], [19] and the

references therein. Embedding is always a classical topic in functional anal-

ysis, partial differential equations and other fields. Related to embedding

theorems, we refer to [1]-[3], [9], [11]-[13], [22] and the references therein. Af-

terwards, some scholars did further research on the theory and applications

of these kinds of spaces (see [6], [8] and the references therein). These results
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provide the necessary framework for the study of variational problems and

elliptic equations with non-standard p(x)-growth conditions.

The remainder of the paper is structured as follows. Section 2 contained

some preliminaries along with the standard ingredients used in the proofs. We

give an integral representation result for functions defined on Sobolev spaces

in Section 3. Our principal assertions, concerning the embedding theorem

in variable Sobolev spaces are formulated and proved in Section 4. Namely,

we prove the boundedness of the differentiation operator from anisotropic

variable Sobolev space to variable Lebesgue spaces. In particular, we proved

the boundedness of the Sobolev average function in variable Lebesgue space

under the global log-Hölder continuity condition on variable exponents.

2 Preliminaries

Let Rn denote n-dimensional Euclidean space and let x ∈ Rn. Suppose that

p(x) is a Lebesgue measurable function with values in [1, ∞). We suppose

that 1 ≤ p ≤ p(x) ≤ p ≤ ∞, where p := ess inf
x>0

p(x) and p := ess sup
x>0

p(x).

We denote by P(Rn) the set of all Lebesgue measurable functions p : Rn 7→
[1,∞). Given p(·) ∈ P(Rn), we define the conjugate exponent function p′(·)
by the formula

1

p(x)
+

1

p′(x)
= 1. Let N be the set of natural numbers and

let N0 = N ∪ {0}. Suppose that k = (k1, . . . , kn) ∈ Nn
0 is a multi-index and

let |k| = k1 + . . . + kn. Next, we will use the conventions: 1 = (1, . . . , 1) ,

k! = k1! · · · kn!, x = (x1, . . . , xn) , xk = xk11 · · ·xknn and (x, k) =
n∑
i=1

xiki. Let

λ = (λ1, . . . , λn) , λi > 0 (i = 1, . . . , n) and ε > 0. We set ελ =
(
ελ1 , . . . , ελn

)
and

x

ελ
=
( x1

ελ1
, . . . ,

xn
ελn

)
. Let Iελ =

{
x : |xi| ≤ ελi , i = 1, . . . , n

}
be a cube

with center at 0. By Dxi and Di we denote the partial derivative with respect

to the variable xi and with respect to the i-th variable, respectively. Let χG

be a characteristic function of G ⊂ Rn.
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Definition 1. We denote by Lp(·) (Rn) the space of all Lebesgue measurable

functions f on Rn such that for some λ0 > 0∫
Rn

(
|f(x)|
λ0

)p(x)

dx <∞.

The norm in variable Lebesgue spaces Lp(·)(Rn) is defined by the following

functional (see [7], [10] and [14])

‖f‖Lp(·)(Rn) = ‖f‖p(·) = inf

λ > 0 :

∫
Rn

(
|f(x)|
λ

)p(x)

dx ≤ 1

 .

If p(x) ≡ p = const, then Lp(·) (Rn) = Lp (Rn) is the classical Lebesgue

space with constant exponent. Also,

‖f‖Lp(·)(Rn) =

∫
Rn

|f(x)|p dx

 1
p

.

It is well known that Lp(·) (Rn) is a Banach space with respect to the

norm ‖ · ‖p(·) (see [7]).

Definition 2. Let Ω ⊂ Rn be an open set and let k = (k1, . . . , kn) be a

multi-index. A function f ∈ L1
loc(Ω) is weakly differentiable, if there exists a

function gk ∈ L1
loc(Ω) such that for every ϕ ∈ C∞0 (Ω)∫

Ω

f(x)ϕ(k)(x) dx = (−1)|k|
∫
Ω

g(x)ϕ(x) dx.

A function g is called the k-th weak derivative of f and we write g = f (k).

The following Lemma holds.

Lemma 1. Let 1 ≤ p(x) < ∞ be a measurable functions and let f ∈
Lp(·) (Rn) . Suppose that {fj} is a sequence of functions in Lp(·) (Rn) having

weak derivatives f
(k)
j ∈ Lp(·) (Rn) , j = 1, . . . .

If
∥∥∥f (k)

i − f
(k)
j

∥∥∥
p(·)
→ 0 (i, j →∞), then f (k) ∈ Lp(·) (Rn) and

∥∥∥f (k)
i − f (k)

∥∥∥
p(·)
→

0 as i→∞.
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Proof. Since
∥∥∥f (k)

i − f
(k)
j

∥∥∥
p(·)
→ 0 (i, j → ∞) there exists a function

h ∈ Lp(·) (Rn) such that
∥∥∥f (k)

i − h
∥∥∥
p(·)
→ 0 as i → ∞. Since fi has a weak

derivative f
(k)
i on Rn, for any function ϕ ∈ C∞0 (Rn) , we have∫

Rn

f
(k)
i (x)ϕ(x) dx = (−1)|k|

∫
Rn

fi(x)ϕ(k)(x) dx. (1)

We observe that integration in (1) is carried out only over some compact

K ⊂ Rn. So, passing to the limit as i→∞ in (1), one has∫
Rn

h(x)ϕ(x) dx = (−1)|k|
∫
Rn

f(x)ϕ(k)(x) dx.

Thus, we have that h = f (k).

This completes the proof.

Definition 3. [15] Let 1 ≤ p(x) < ∞ be a measurable functions and let

` = (`1, . . . , `n) ∈ Nn. We denote by W `
p(·) (Rn) the anisotropic Sobolev space

of all real-valued functions f ∈ Lp(·) (Rn) having weak derivatives D`i
i f ∈

Lp(·) (Rn) , i = 1, . . . , n. This space is equipped with the norm

‖f‖W `
p(·)(R

n) = ‖f‖p(·) +
n∑
i=1

∥∥D`i
i f
∥∥
p(·) .

Definition 4. [4] Let s = (s1, . . . , sn) be a vector with positive components.

Suppose that 0 < h ≤ ∞, ε > 0 and ai 6= 0, i = 1, . . . , n. An s-horn of radius

h and opening ε is a set defined as follows:

V (s) = V (s, h) =
⋃

0<v<h

{
x :

xi
ai
> 0, v <

(
xi
ai

)si
< (1 + ε)v (i = 1, . . . , n)

}
.

For two measurable functions f and g, we define the convolution by

(f ? g) (x) :=

∫
Rn

f(x− y) g(y) dy =

∫
Rn

f(y) g(x− y) dy.
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Definition 5. [10] Let Ω ⊂ Rn be an open set. We say that a function

p : Ω 7→ [1,∞) is locally log-Hölder continuous on Ω, if there exists C1 > 0

such that

|p(x)− p(y)| ≤ C1

−log(|x− y|)
for all 0 < |x− y| ≤ 1

2
.

We say that p satisfies the log-Hölder decay condition if there exist p∞ ≥ 1

and a constant C2 > 0 such that

|p(x)− p∞| ≤
C2

log(e+ |x|)
for all x ∈ Ω.

We say that p is globally log-Hölder continuous in Ω if it is locally log-Hölder

continuous and satisfies the log-Hölder decay condition. The constants C1

and C2 are called the local log-Hölder constant and the log-Hölder decay con-

stant, respectively. The maximum max {C1, C2} is just called the log-Hölder

constant of p.

Let us define the following class of variable exponents

P log(Ω) :=

{
p ∈ P(Ω) :

1

p
is globally log-Hölder continuous

}
.

Definition 6. [21] A function ψ ∈ L1 (Rn) with ψ ≥ 0 is called bell shaped,

if it is radially decreasing and radially symmetric. The function Φ(x) :=

ess sup
|y|≥|x|

|f(y)| is called the least bell shaped majorant of f.

Let us define the function

ψελ(x) :=
1

ε|λ|
ψ
( x
ελ

)
.

We need the following lemma.

Lemma 2. Let p ∈ P log(Rn) and let ψ ∈ L1 (Rn) . Suppose that the least bell

shaped majorant Ψ of ψ is integrable. Then the inequality

‖f ? ψελ‖p(·) ≤ C‖Ψ‖1 ‖f‖p(·)
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holds for all f ∈ Lp(·) (Rn) , where C constant depend only on p, λ and n.

Moreover,

|f ? ψελ| ≤ 2 ‖Ψ‖1 ‖f‖p(·) for all f ∈ L1
loc(Rn).

We observe that Lemma 1 in the case when λ = (1, . . . , 1) is proved [10].

The proof is similar to the proof of Lemma 4.6.3 in [10].

We need the following Theorem.

Theorem 1. [10] Let p, q, r ∈ P(Rn) with p(x) ≤ q(x) ≤ r(x) almost every-

where x ∈ Rn. Then

Lp(·) (Rn)
⋂

Lr(·) (Rn) ↪→ Lq(·) (Rn) ↪→ Lp(·) (Rn) + Lr(·) (Rn) .

The embedding constants are at most 2. More precisely, for g ∈ Lq(·) (Rn) the

functions g0 := sgn gmax {|g| − 1, 0} and g1 := sgn gmin {|g|, 1} satisfy

g = g0 + g1, |g0| , |g0| ≤ |g|, ‖g0‖p(·) ≤ 1 and ‖g1‖r(·) ≤ 1.

Using Lemma 1 we can in fact get better control of f ?ψελ when ε is small

as we show in the following theorem.

Theorem 2. Let p ∈ P log (Rn) and let ψ ∈ L1 (Rn) . Suppose that the least

bell shaped majorant Ψ of ψ is integrable and

∫
Rn

ψ(x) dx = 1. Then f ?ψελ →

f a.e. as ε→ 0 for f ∈ Lp(·) (Rn) . In addition, if p <∞, then

‖f ? ψελ − f‖p(·) → 0 for ε→ 0.

Proof. Let f ∈ Lp(·) (Rn) with ‖f‖p(·) ≤ 1. By Theorem 1 we can split f

into f = f0 + f1 with f0 ∈ L1 (Rn) and f1 ∈ L∞ (Rn) . From [21] we deduce

that fj ? ψελ(x) → fj(x) almost everywhere x ∈ Rn, j = 0, 1. This proves

f ? ψελ(x)→ f(x) almost everywhere x ∈ Rn.
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Let p <∞. It remains to prove that ‖f ? ψελ − f‖p(·) → 0 for ε→ 0. Let

δ > 0 be arbitrary. Then by density of simple functions in Lp(·) (Rn) (see

[14]) we can find a simple function g with ‖f − g‖p(·) < δ. This implies that

‖f ? ψελ − f‖p(·) ≤ ‖g ? ψελ − g‖p(·) + ‖(f − g) ? ψελ − (f − g)‖p(·) = I1 + I2.

Since g is a simple function, we have that g ∈ L1 (Rn)
⋂
Lp (Rn) . Thus the

classical theorem on mollification (see [21]) implies that ‖g ? ψελ − g‖L1
⋂
Lp
→

0 for ε→ 0. Thus, by Theorem 1 ‖g ? ψελ − g‖p(·) → 0 for ε→ 0. This proves

that I1 → 0 for ε→ 0. On the other hand, Lemma 2 implies that

I2 = ‖(f − g) ? ψελ − (f − g)‖p(·) ≤ C ‖f − g‖p(·) ≤ C δ.

This implies

lim
ε→0

sup ‖f ? ψελ − f‖p(·) ≤ C δ.

Since δ > 0 is arbitrary, this yields lim
ε→0

sup ‖f ? ψελ − f‖p(·) → 0 as ε→ 0.

This complete the proof of Theorem 2.

We need the following Theorem.

Theorem 3. [7] Let p(·) ∈ P(Rn) and let p < ∞. If the sequence {fm} is

such that fm → f pointwise a.e., and there exists g ∈ Lp(·) (Rn) such that

|fm(x)| ≤ g(x) a.e., then f ∈ Lp(·) (Rn) and ‖fm − f‖p(·) → 0 as m→∞.

Corollary 1. Let f ∈ Lp(·) (Rn) and let Gm be a sequence of bounded mea-

surable sets such that Gm ⊂ Gm+1 ⊂ Rn and Rn =
∞⋃
m=1

Gm. Then

lim
m→∞

∥∥fχ
Gm
− f

∥∥
p(·) = 0

Suppose that K is an infinitely differentiable function on Rn with compact

support and let

∫
Rn

K(x) dx = 1. For the sake of simplicity, we will henceforth
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assume that suppK = S(K) ⊂ I1. Let us define the average function for the

function f with the kernel K and the averaging parameter ελ by the formula

fελ(x) = ε−|λ|
∫
Rn

f(x+ y)K
( y
vλ

)
dy = ε−|λ|

∫
Rn

f(y)K

(
y − x
ελ

)
dy.

We observe that fελ ∈ C∞0 (Rn) and

Dα
xfελ(x) = (−1)|α| ε−|λ|−(α,λ)|

∫
Rn

f(y)DαK

(
y − x
ελ

)
dy.

It is obvious that fελ(x) = (f ? Kελ) (x). Thus, we have similar results for

the average function fελ .

Corollary 2. Let p ∈ P log (Rn) and let p < ∞. Then C∞0 (Rn) is dense in

Lp(·) (Rn) .

Proof. Suppose f ∈ Lp(·) (Rn) and fix ε > 0. By Corollary 1, for functions

from spaces Lp(·) (Rn) there exists a bounded open set G ⊂ G ⊂ Rn such

that

‖f − fχG‖p(·) <
ε

2
.

We set fG = fχG. For the function fG, we compose the average function

fG, v1 = fG, v, where v > 0. It is obvious that fG, v ∈ C∞0 (Rn). By Theorem 2

for sufficiently small v we have

‖fG − fG, v‖p(·) <
ε

2
.

Thus, we get

‖f − fG, v‖p(·) ≤ ‖f − fG‖p(·) + ‖fG − fG, v‖p(·) <
ε

2
+
ε

2
= ε

This complete the proof.
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3 The integral representation of functions in

W `
p(·) (Rn) .

The proof of the integral representation of functions given in this section is

based on the following simple idea.

For a given locally summable function f, we construct its average function

fελ(x) with some kernel L and averaging parameter ελ, where λ is a fixed

vector. It is obvious that the average function fελ(x) can be considered as a

continuously differentiable function with respect to the parameter ε.

We set 0 < ε < h. By the fundamental theorem of calculus, we have

fελ(x) = fhλ(x)−
h∫
ε

∂

∂v
fvλ(x) dv.

The last identity is the initial one when deriving the integral representa-

tion of functions from the space W `
p(·) (Rn) .

Let θ be the Heaviside function on R. Proceeding in the same way as in

the proof of the integral representation of functions in the case of constant

exponents (see [4]), we can show that

fελ(x) = fhλ(x) +

h∫
ε

n∑
i=1

v−1−|λ|+`iλi dv

∫
Rn

D`i
i f(x+ y)Li

( y
vλ

)
dy, (2)

where fελ(x) = ε−|λ|
∫
Rn

f(x+ y) Ω
( y
vλ

)
dy,

Ω(x) = Dk
x

 xk−1

(k − 1)!

∫
Rn

K(z)
n∏
j=1

θ (xj − zj) dz

 ,
k = (k1, . . . , kn) , ki are sufficiently large natural numbers, Li(x) = (−1)`i λiD

ki−`i
i L̃i(x),
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`i ≤ ki (i = 1, . . . , n) and

L̃i(x) = Dk−kiei

 xk−1 xi
(k − 1)!

∫
Rn−1

K (z1, . . . , xi, . . . , zn)

∏
j

j 6=i

θ (xj − zj)

 dz(i)

 .
Representation (2) can be considered as an integral representation of the

difference in the values of the average functions with parameters ελ and hλ

at the point x through the integrals of the weak derivatives of the functions

f.

So, we have the following theorem.

Theorem 4. Suppose that ` = (`1, . . . , `n) ∈ Nn
0 and let h > 0. Let p ∈

P log (Rn) and let K ∈ C∞0 (Rn) . Suppose that the least bell shaped majorant

Φ of K is integrable and

∫
Rn

K(x) dx = 1.

Then for any function f ∈ W `
p(·) (Rn) the following integral representation

holds

f(x) = fhλ(x) +

h∫
0

n∑
i=1

v−1−|λ|+`iλi dv

∫
Rn

D`i
i f(x+ y)Li

( y
vλ

)
dy. (3)

Proof. It is clear that all conditions of Theorem 2 are satisfied. Thus,

by tending ε to 0 in (2), by Theorem 2 we obtain identity (3) for almost

everywhere x ∈ Rn. We observe that the support of the representation (3) is

the shifted `-horn x+ V (`).

This completes the proof.

4 Embedding theorems in variable exponent

anisotropic Sobolev space

In this section we prove the continuity of embedding operator on variable

exponent anisotropic Sobolev space.
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Theorem 5. Suppose that p ∈ P log (Rn) with p < ∞ and let h > 0. Let

α = (α1, . . . , αn) ∈ Nn
0 be a multi-index,

∣∣∣α
`

∣∣∣ < 1 and λ =
1

`
. Suppose that

all the conditions of Theorem 2 and Theorem 4 are satisfied.

Then DαW `
p(·) (Rn) ↪→ Lp(·) (Rn) and the following inequality holds

‖Dαf‖p(·) ≤ C1h
−|α` | ‖f‖p(·) + C2 h

1−|α` |
n∑
i=1

∥∥D`i
i f
∥∥
p(·) ,

where C1, C2 is independent on f and h ∈ (0, h0) .

Proof. It is obvious that for λ =
1

`
the representation (2) has the form

fελ(x) = fhλ(x) +

h∫
ε

n∑
i=1

v−|λ| dv

∫
Rn

D`i
i f(x+ y)Li

( y
vλ

)
dy. (4)

Applying the differentiation operator Dα
x to both parts of (4), we have

Dα
xfελ(x) = Dα

xfhλ(x) +

h∫
ε

n∑
i=1

v−|λ|−|
α
` | dv

∫
Rn

D`i
i f(x+ y)Mi

( y
vλ

)
dy.

Next, we have

Dα
xfελ(x) = (−1)|α|h−|

α
` | (f ? (DαΩ)hλ) (x)+

h∫
ε

n∑
i=1

v−|
α
` | (D`i

i f ? (Mi)vλ
)

(x) dv.

(5)

We observe that Ω, Mi ∈ C∞0 (Rn) (i = 1, . . . , n), and their supports are

such that the support of the integral representation (4) is the `-horn V (`).

In addition, let Ω̃(x) = ess sup
|y|≥|x|

|DαΩ(y)| and Ni(x) = ess sup
|y|≥|x|

|Mi(y)| (i =

1, . . . , n), respectively. Let us assume that the functions Ω̃ and Ni satisfy the

conditions of Theorem 2.

Let 0 < ε < η < h. By generalized Minkowski inequality and by Lemma

2, we have

∥∥Dα
xfελ −Dα

xfηλ
∥∥
p(·) ≤

n∑
i=1

η∫
ε

v−|
α
` | ∥∥D`i

i f ? (Mi)vλ
∥∥
p(·) dv
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≤ 2
n∑
i=1

‖Ni‖1

∥∥D`i
i f
∥∥
p(·)

η∫
ε

v−|
α
` |dv ≤ C

(
η1−|α` | − ε1−|α` |

) n∑
i=1

∥∥D`i
i f
∥∥
p(·)

≤ C η1−|α` |
n∑
i=1

∥∥D`i
i f
∥∥
p(·) . (6)

So, Dαfελ(x) is converges in Lp(·) (Rn) as ε → 0. On the other hand by

Theorem 2 ‖fελ − f‖p(·) → 0 as ε→ 0. By Lemma 1 there are exists a weak

derivative Dαf ∈ Lp(·) (Rn) and ‖Dαf −Dαfελ‖p(·) → 0 as ε → 0. Thus,

lim
ε→0
‖Dαfελ‖p(·) = ‖Dαf‖p(·).
By (5) and (6), we have

‖Dαf‖p(·) ≤ h−|
α
` | ‖(f ? (DαΩ)hλ)‖p(·) + C h1−|α` |

n∑
i=1

∥∥D`i
i f
∥∥
p(·) .

By Lemma 2, we get

‖Dαf‖p(·) ≤ 2
∥∥∥Ω̃
∥∥∥

1
h−|

α
` | ‖f‖p(·) + C h1−|α` |

n∑
i=1

∥∥D`i
i f
∥∥
p(·) . (7)

It is obvious that the inequality (7) holds for all h ∈ (0, h0) .

We consider the function defined by

g(h) = h−|
α
` | ‖f‖p(·) + h1−|α` |

n∑
i=1

∥∥D`i
i f
∥∥
p(·) .

The derivative of the function g is

g′(h) = h−1−|α` |
(
−
∣∣∣α
`

∣∣∣ ‖f‖p(·) + h
(

1−
∣∣∣α
`

∣∣∣) n∑
i=1

∥∥D`i
i f
∥∥
p(·)

)
.

So, at h =

∣∣α
`

∣∣
1−

∣∣α
`

∣∣ ‖f‖p(·)
n∑
i=1

∥∥D`i
i f
∥∥
p(·)

the function g has minimum value. Taking

into account the value of h on the right side of inequality (7), we have

‖Dαf‖p(·) ≤ C ‖f‖1−|α` |
p(·)

(
n∑
i=1

∥∥D`i
i f
∥∥
p(·)

)|α` |
. (8)

13

JZU NATURAL SCIENCE || ISSN : 1671-6841

VOL 56 : ISSUE 08 - 2025

https://naturalscience.fyi/

PAGE NO: 508



Let 1 < s < ∞ and let a, b ≥ 0. Suppose that s′ =
s

s− 1
. Then the

following Young’s inequality holds

ab ≤ as

s
+
bs
′

s′
.

Let δ(α, `) = max
{

1−
∣∣∣α
`

∣∣∣ , ∣∣∣α
`

∣∣∣}. Suppose that s =
1

1−
∣∣α
`

∣∣ . By (8) and by

Young’s inequality we have that

‖Dαf‖p(·) ≤ C ‖f‖1−|α` |
p(·)

(
n∑
i=1

∥∥D`i
i f
∥∥
p(·)

)|α` |

≤ C

((
1−

∣∣∣α
`

∣∣∣) ‖f‖p(·) +
∣∣∣α
`

∣∣∣ n∑
i=1

∥∥D`i
i f
∥∥
p(·)

)

≤ C δ(α, `)

(
‖f‖p(·) +

n∑
i=1

∥∥D`i
i f
∥∥
p(·)

)
= C δ(α, `) ‖f‖W `

p(·)(R
n).

This completes the proof.

Remark 1. We observe that when p(x) = p = const, Theorem 5 was proved

in [4]. Related to continuous and compact embeddings between different vari-

able Sobolev and variable Lebesgue spaces, we refer to [1]-[3], [9], [11]-[13],

[22] and the references therein.
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