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Abstract— With rapid developments in deep learning models Vision Transformers (ViT) are being widely used for computer 
vision applications. Self-attention mechanism enables vision transformers to extract global information from input data and 
capture long range dependencies in images in contrast to convolutional neural networks (CNN). Hence vision transformers 
perform better than CNN. But trainable parameters of vision transformers and hence model size of vision transformers are 
significantly larger than CNN. Also, memory consumption and hence resultant cost of the model increases with increase in input 
image or video size. This causes a restriction of using ViT in edge devices as these devices have limited storage and 
computational capacity. Also inference latency is more due to larger model size. Using artificial intelligence algorithms on edge 
devices results in processing data locally and results in faster response time, low power consumption and improved security. 
Deploying these models on edge devices is tough due to restrictions on memory as well as computing abilities. This paper reviews 
various methods used to reduce the vision transformer model size and trainable parameters and to optimize the performance of 
ViTs on edge devices and also identifies challenges in it. 
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I. INTRODUCTION  

Since last decade, use of deep learning-based architectures has considerably increased in industrial vision applications as well as 
in language applications due to their ability to process large and complex data. Convolutional neural networks (CNN) [1,2], 
Recurrent neural network (RNN) [3], Long short term memory (LSTM) [4] have come into picture for image and language 
applications. Further, transfer learning [5,6] provided the facility to reuse models trained on one task for another task. In 2014 
Bahdanau [7] proposed an attention mechanism in deep learning for machine translation, where the model focuses on selected parts 
of input data that are relevant to input while processing. Authors have introduced the model which aligns and translates jointly. It 
means that when the model translates a specific word in input sentence, it also searches for the position, where the most relevant 
information in the input sentence is present i.e. it captures long term dependency in sequence-to-sequence models. Using context 
vectors associated with position in input sentence and all previously generated target words, the model predicts translation of a 
word under consideration. Hence, improved translation is obtained in the encoder-decoder model even if sentences are longer than 
the one in training corpus. Further in 2017 Vaswani et al. [8] proposed self-attention mechanism, which led to development of 
transformer architecture. Transformer does not contain recurrent neural network (RNN) layers and convolutional neural network 
(CNN) layers. Transformer processes all tokens parallelly increasing efficiency and scalability. Due to their computational 
efficiency and scalability, transformers became the milestone in natural language processing (NLP) applications. 

Transformer architecture used in NLP inspired their use for computer vision applications too. Many researchers tried to 
combine transformers with CNN [9,10]. Replacing CNN by transformer architecture was also experimented [11,12] but scalability 
was not achieved because of specific attention mechanisms used in transformers. Dosovitskiy et. al. [13] proposed transformer for 
computer vision applications in 2021 by applying it for training image classification task first. This started a remarkable shift in 
computer vision where convolution operation is replaced by attention mechanisms. But use of vision transformers for computer 
vision applications needs a very large amount of training data to get closer or even better performance as compared to CNN. Vision 
transformers are also being used in many computer vision applications like object detection, semantic segmentation, action 
recognition, image generation are some of them.  

Organization of the remaining paper is as follows: Section II describes details of Vision Transformer with self attention 
mechanism used in it. Section 3 summarizes how vision transformer can be used for different types of vision applications and 
limitations of using them on resource constrained devices. Section 4 details about designing and training methods of transformers 
for resource constrained devices. 

II. VISION TRANSFORMER 

Transformers capture long term dependency in the input and process tokens parallelly leading to better speed of operation. Due 
to self-attention mechanism transformers require high computational resources and need large amount of dataset to get optimized 
performance. Dosovitskiy et al. [14] proposed vision transformer in 2021, in which instead of combining attention with CNN, a 
pure transformer can be directly applied to images. For 2D images they have patchified the image and then flattened each small 
patch to make it 1D input to vision transformer. Detail architecture of proposed vision transformer by authors is shown in Figure1. 

JZU NATURAL SCIENCE || ISSN : 1671-6841

VOL 56 : ISSUE 08 - 2025

https://naturalscience.fyi/

PAGE NO: 476



 

 
Fig.1   Vision Transformer Architecture Proposed by Dosovitskiy 

It is further mapped to linear projection of dimension D. Output of this linear projection is called patch embedding. A special CLS 
token is prepended to this patch embedding, similar to BERT in NLP. Positional embedding is added to patch embedding and then 
it is passed as input to encoder. Each encoder block [9] contains stack of normalizing layer followed by Multi head Self attention 
(MSA) and Multi-Layer Perceptron (MLP) block. Self-attention mechanism finds the relevance of one token with other tokens 
which leads to extraction of global information from input features in patch embedding. 

 
Fig.2 Self attention in transformers (left) and Multi head attention in transformers (right) 

III. VISION TRANSFORMERS FOR VARIOUS COMPUTER VISION APPLICATIONS AND LIMITATIONS 

For complex real-life applications like autonomous driving, surveillance applications where occlusion can be major issue and 
can not be resolved to expected level by CNN, ViTs can be used. In medical image applications of segmentation and classification 
where higher accuracy is important, ViTs can be preferred over CNNs. Also, in satellite imagery segmentation and classification 
ViTs can process these complex data faster and generate more accurate results than CNNs. Some of the real-world applications 
which use variants of ViTs are discussed below:  

In smartphone, wearables and IoT devices biometric authentication is used for secure unlocking. MobileViT [21], 
EfficientViT [22] are used for such applications. EfficientViT is also used in real time augmented reality filters in apps like 
Snapchat. For real time threat (anomaly) detection edge AI cameras use EfficientViT. In autonomous car driving applications, 
accurate real time object detection (pedestrians, traffic signs, other vehicles on the road etc.) is very important. Tesla’s Full Self 
Driving System (FSD) uses vision transformers. Scanning of real time medical images on smart devices uses EfficientViT. 
Smartwatches with the inclusion of TinyViT [14] can detect skin diseases and other anomalies. For real time arial image analysis, 
ViTs are also used in drones and drone detection [15], in processing thermal images as well as night time drone footages. For 
plant health assessment [16], pest detection [17] in agriculture field, ViTs are used. For example, AgriViT is used for pest 
detection, yield prediction [18]. In industrial applications like defect detection [19], obstacle detection by robot ViTs perform 
major role [20]. The range of applications is very wide and ViTs can be suitable than CNNs for many of these real time 
applications on edge devices. 

Edge devices like IoT devices, embedded systems etc. as the name suggests have limited memory and computational 
capacity. Vision transformers use image patchification as first step. For high resolution images, number of patches increase. 
Further when self-attention mechanism is used, it results in very high computational complexity O(N2) where N denotes the 
number of patches. In turn it makes the model computationally expensive. Also, each layer involves matrix multiplication which 
need more processing power. ViTs need extensive amount of data for efficient performance. Hence model size is high with 
millions of parameters. It requires high memory capacity which is limitation of the resource constrained devices. Due to heavy 
computation in transformers, high power consumption may require which can make these devices to fail while processing. 
Inference latency in real time applications is another issue observed in such devices due to heavy computations. These constraints 
pose a need to efficiently design and train ViTs [21]. 
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This paper focuses on details of major designing and training methods for efficient working of ViTs for resource constrained 
devices. 

IV. DESIGNING AND TRAINING METHODS OF TRANSFORMERS FOR RESOURCE CONSTRAINED DEVICES 

Issues in using ViTs on resource constrained devices can be addressed using various methods so that ViT can perform on such 
devices and with optimized performance. The methods which show significant impact on optimizing the performance of ViTs on 
Edge devices are: 

 Designing compact architecture: Designing transformer architecture which can work in resource constrained environment 
 Model pruning: Removing less critical parameters in ViT to reduce the model size 
 Quantization: Lowering the precision of computations by using 8-bit integer instead of 32-bit floating-point number format 

in mathematical computations in transformer. 
 Knowledge distillation: Using a shallow model by sharing and compressing knowledge of deep network model 

A. Designing Compact Architecture 

Many researchers have focused on different architectures of vision transformers to avoid high computational cost. Multi head 
self-attention (MSA) mechanism mainly contributes in high computation cost in vision transformers. Researchers have tried to 
linearize the cost of self attention module to reduce high computation cost. In 2021 Wang et al. [22] proposed pyramid 
transformer. It controls the scale of feature maps by patch embedding layers which uses progressively shrinking strategy and 
reduces the computations of larger feature maps. Authors have used spatial reduction attention (SRA) layer instead of MSA in 
encoder architecture. It reduces complexity of attention operation and resource consumption of vision transformers. Such 
transformers can be trained on dense partitions of an image to obtain high resolution outputs.  

 Liu et al. have proposed swin transformer in 2021 [23]. Authors have proposed local multi head self attention within shifted 
non overlapping window in their paper that gives linear computational complexity. When it is used for inference in real world 
applications it gave good improvements in latency. Lu et al. [24] have proposed Softmax free transformer called as SOFT. 
Koohpayegani and Pirsiavash in 2024 [ 25 ] have proposed softmax free attention block. Instead of using softmax layer, 
normalization of query and key matrices is done using L1 normalization. Hence instead of computing exponential operations using 
softmax, simple multiplication of matrices is performed which reduces computation cost of model.  

Mehta and Rastegari have proposed MobileViT [26] which is light weight and low latency transformer for mobile devices. 
Low latency on mobile devices is decided by different factors like memory access, FLOPS, degree of parallelism and platform 
characteristics etc. Authors have introduced MobileViT block that replaces local processing in convolutions with global 
processing using transformers. This allows MobileViT block to learn better representations with a smaller number of parameters 
and simple training. Its performance was tested on mobile device iphone12 for different patch sizes and it was observed that for 
smaller patch size it gives better accuracy. 

Cai et al. [27] proposed EfficientViT in 2023. An efficient ViT architecture is designed with linear computational cost to 
handle high-resolution dense prediction tasks such as semantic segmentation and super-resolution. The authors leverage the use of 
the ReLU-based global attention [28] to achieve both the global receptive field of ViT and linear computational complexity. 
Setyawan et al. [29] have proposed micro-ViT architecture suitable for edge devices. They have used single head attention which 
uses group convolutions to eliminate feature redundancy and processes only a fraction of the channels. It reduces the burden of 
self-attention mechanism. When experimented on ImageNet and COCO dataset, it was observed that operation speed of this 
micro-ViT is 3.6X faster with 40% higher efficiency with reduction in energy consumption. 

In [30], Hu et al. have used Tiny ViT-5 m architecture for classification in agricultural application. It has shown nearly 60.16% 
decrease in the number of parameters, a 41.03% decrease in FLOPs, and a 1.84% rise in accuracy of model classification when used 
for agricultural application of red jujube defect classification. 

B. Model pruning 

Pruning methods have been found to be very useful to reduce model storage size and computational cost of the model. 
Pruning methods are of two categories: structured pruning and unstructured pruning. In structured pruning, entire structure like 
layer, attention head or attention block is removed whereas in unstructured pruning individual element at smaller level like neuron 
or weight is eliminated from model architecture.  

In earlier literature, Frankle and Carbin [31] and Han et al. in [32] have proposed unstructured pruning where weights were 
pruned. These methods can reduce model size considerably provided specialized hardware is used for running these models and 
get the inference faster. In transformers, feed forward network (FFN) sublayer and multihead attention (MHA) sublayer contribute 
higher number of parameters. Score based pruning models proposed by Ramanujan et al. [33] assigns a score for each parameter 
and replaces original matrix of weight parameter by masked version of weight matrix where the low absolute value parameters are 
replaced by zero by the mask. In case of vision transformers, Zhu et al. [34] have presented pruning approach which identifies the 
impact of dimensions in each layer of the transformer and then performs pruning accordingly. Dimensions with less importance 
score were discarded to obtain high pruning ratio without affecting the accuracy of the model. In vision transformer, Multi-Head 
Self-Attention (MHSA) and multilayer perceptron (MLP) requires large number of parameters. Hence the aim is to decrease the 
FLOPs of MHSA and MLP. Authors have proposed to prune the dimension of the linear projection by learning their associated 
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importance scores. L1 regulation is applied to sparse the dimensions of the transformer. Lu Yu and Wei Xiang [35] have proposed 
explainable pruning framework in 2023. They have proposed explainability of the model which learns each prunable unit’s 
contribution to predict each target class. Further layer wise threshold is searched to distinguish between pruned and unpruned 
units based on their explainability aware mask values. 

Kaixin Xu et al. [36] have proposed block structured pruning to handle resource intensive issues of vision transformers and call 
it as low power ViT (LPVIT). Authors have proposed hardware aware learning to maximize speed of operation and minimize 
power consumption during inference. Dachuan Shi et al. [37] have proposed pruning for multi-modal transformer models specially 
for vision-language transformers. This model gives better convergence and higher compression ratio for all compressible 
components. Yogi et al. [38] have applied sparse regularization technique along with pruning and obtained increase in accuracy by 
different values for different datasets. Fatih Ilhan et al.[39] have proposed Resource and Computation efficient pruning framework 
called as RECAP with the goal to reduce GPU memory footprint without affecting the performance of the model. Authors have 
experimented on various vision-based tasks as well as language-based tasks and observed that their proposed technique offers 65% 
reduction in GPU footprint. 

Grouped Structural Pruning proposed by hamza and Alan analyzes the network using a dependency graph to identify and 
remove interdependent groups of neurons, weights, filters, or attention heads. The pruning rate is determined by importance score 
metrics, and the pruned models are typically fine-tuned afterward. This approach is hardware-friendly and maintains the structural 
integrity of the model by removing inter-dependent parameter groups simultaneously [ 40 ]. Experiments show significant 
speedups and reduced fine-tuning time with minimal accuracy loss, particularly effective for Domain Generalization tasks. 
Accuracy losses become more pronounced as the pruning rates increase.  

A structured pruning method that focuses on pruning channels (dimensions) within the fully connected layers of ViTs is 
proposed by Yuhan Chao [41]. It incorporates L1 regularization on Batch Normalization (BN) layer scale factors during training 
to make them sparse, effectively learning importance scores for dimensions. Dimensions with lower importance scores are then 
cropped. It effectively reduces computational cost and model parameters, particularly in the computationally heavy FC layers of 
self-attention and MLP modules. But accuracy drops slightly as the pruning rate increases. Patch Pruning Methods proposed by 
Shui Xiuying [42] involve various strategies for selecting which patches to remove. Static methods use pre-defined criteria like 
heuristics or saliency, while dynamic methods adapt based on the input, often using attention scores, learned importance modules, 
or reinforcement learning. Pruning can occur before, during, or after transformer processing, each with different trade-offs. It 
shows direct impact on reducing input tokens for self-attention. Dynamic methods offer flexibility based on the input image.  

Token Reduction via an Attention-based Multilayer (TRAM) network has been proposed by Marchetti et. al. in 2025[43]. This 
method represents the ViT's attention matrices as a multilayer network and defines a Token Relevance Centrality measure based 
on this representation. Tokens are pruned based on this centrality score, gradually reducing the number of tokens in each layer. It 
can work with most ViTs without needing fine-tuning. It doesn't introduce additional parameters, making it lightweight. It does 
not rely on the CLS token for importance evaluation, making it compatible with ViTs that do not use one. It can potentially speed 
up both training and inference. TRAM is designed for general ViTs and is not applicable to ViTs with hierarchical structures like 
the Swin Transformer. 

A data-independent pruning method specifically for hierarchical Vision Transformers like the Swin Transformer was proposed 
by He and Zhou [44]. It analyzes modules (e.g., QKV, MLP) and uses a weight importance metric based on information distortion 
to guide pruning. Since it is data-independent, it does not require input images for pruning decisions. It effectively addresses 
challenges specific to hierarchical ViTs and can achieve better accuracy-computation trade-offs compared to uniform magnitude 
pruning. Guang Yang et. al. have proposed a framework that combines two pruning strategies: self-adaptive token pruning and 
Hessian-aware layer-wise N:M weight sparsity [45]. It determines token pruning based on attention probability and importance 
scores, while weight pruning uses the Average Hessian Trace (AHT) to set N:M sparsity ratios layer-wise. This approach is 
designed for efficient deployment on edge devices. By combining token and weight pruning, it can achieve greater overall 
efficiency gains. The N:M weight sparsity is hardware-friendly. It demonstrates significant energy efficiency improvements with 
minimal accuracy loss on edge devices. The reported accuracy loss, while called "negligible," is still a decrease in performance. 
The layer-wise N:M pruning might fix parameters like N to a single value across layers for hardware simplicity. Instead of 
manually setting pruning rates, automatic pruning rate adjustment technique was proposed by Ishibashi and Meng [46]. It 
proposes automatically adjusting the rate during training based on factors like training loss convergence or gradients.  

Thus, pruning basically reduces the number of active neuron connections by setting weights to zero. This is useful at inference 
time because number of non-zero multiplications are reduced to obtain the prediction of class label at the end. But it may not 
affect the number of parameters in the model as these can be saved with weight as zero value. 

C. Quantization 

Quantization is an efficient technique to reduce memory requirement and computational cost of neural networks [47]. In 
quantization, 32-bit floating-point values are quantized to 8-bit integer values. When it is used in neural network model, model 
parameters i.e. weights and activations of model are quantized i.e. represented by lower bit precision to save memory space and 
computational complexity of the model while maintaining the accuracy. 

Two major categories of quantization are Post training quantization (PTQ) [48] and Quantization aware training [59].  Post 
training Quantization (PTQ) compresses the weights and activations once the model is fully trained. Hence retraining of a model 
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is not required with simulated quantization effect. PTQ is useful when retraining of a model is not feasible or expensive due to its 
large size. PTQ gave good results on CNN but for the large and complex models like ViTs it degrades accuracy of the model as 
ViT is very sensitive to quantization of weights, activations and layer normalizations. It results in drop in accuracy with 8-bit 
quantization and it can be up to 1% [49].  

Zhihang Yuan et al. [50] have proposed twin uniform quantization method for vision transformers to reduce quantization 
errors on activation values after softmax and GELU functions. Here they collected output during forward propagation and 
gradient of output during backward propagation at each layer before quantization and then optimal scaling factor was searched for 
each layer to quantize activation values and weight values in that layer. Hessian guided metric was used to minimize the 
difference in weights before and after quantization based on layer wise reconstruction method [51] and it has been observed that it 
improved the performance. Zikai Li and Quingyi Gu [52] proposed integer only quantization (I-ViT). Authors have used integer 
arithmetic and bit shifting to perform entire computational graph of inference. No floating-point arithmetic operations were used. 
Huihong Shi et al. proposed power of two post training quantization method in [53]. Instead of rounding the scaling factor 
directly, they used adaptive rounding post training. They have also scaled up hardware resources for accelerators.  

Liu et al. in 2023 [54] have proposed post quantization method for transformer activation functions. Proposed strategy was 
named as NoisyQuant and it adds NoisyBias to GELU activation function. This operation is performed before quantization. It 
flattens the data peak and makes quantization process smooth and it follows original data distribution with lower bit rate. Some 
quantization methods focus on compression strategies for specific hardware devices and not only compressing activation 
functions and attention layers. Lit et al. [55] have proposed a framework for ViT quantization for inferencing on FPGA powered 
devices. Quantization is applied on FNN module of attention block to speed up inference process. Jiang et. al. have proposed post 
training quantization method in 2025 known as Architecture Informed post training quantization which is specifically tailored for 
ViTs. Basically, it incorporates an architecture-informed low-rank compensation mechanism that introduces learnable low-rank 
weights to mitigate the degradation caused by weight quantization. This mechanism uses network architecture search to determine 
the appropriate rank for these compensatory weights [56].  

Zhuguanyu Wu et. al. proposed a novel PTQ approach that leverages importance estimation based on the Average Perturbation 
Hessian (APH). It proposes an improved average perturbation Hessian loss to address the issue of inaccurate output importance 
estimation in block reconstruction [ 57 ]. APHQ-ViT also tackles the degradation associated with quantizing post-GELU 
activations through its MLP Reconstruction (MR) method. MR replaces the GELU activation function in MLP layers with ReLU, 
which helps reduce the activation range and alleviate imbalanced distributions, making these activations more suitable for 
quantization. 

For specific applications, such as real-time EEG classification using the Brain Signal Vision Transformer (BSVT), dynamic 
post-training quantization has been explored by Khadka et. al in 2025. This method converts the model to INT8 precision. It 
dynamically determines the scale factor for activations during runtime based on the data range of each batch, simplifying the 
tuning process. Symmetric quantization is applied to weights. Certain high-precision operations like Softmax, Layer 
Normalization, and GELU retain FP32 precision in this approach [58 ]. Quantization aware training (QAT) [ 59 ] applies 
quantization effect during training. It exposes the model to quantization errors during training. It helps model to adapt to precision 
loss and learning representation that are more robust to quantization. In QAT, it quantizes weights, activations and attention 
scores too. In vision transformers layer normalizations and attention mechanism are highly sensitive to precision changes. QAT 
increases training complexity and computation compared to PTQ. It significantly improves model robustness and enables the 
deployment of ViTs on edge devices, embedded systems, and specialized accelerators like TPUs and NPUs without substantial 
accuracy loss.  

D. Knowledge Distillation 

Due to stacking of self-attention modules on multiple heads, ViTs become expensive. In such case, compressing ViT to reduce 
the computational cost is necessary. Hinton et al. [60] in 2015, proposed knowledge distillation. Knowledge distillation is a 
process of transforming large complex model into smaller one without compromising performance. It improves learning 
efficiency and model understanding without requiring high amount of computational power. Knowledge distillation process has 
three parts: knowledge, distilling algorithm and teacher-student architecture. There are three types of knowledge distillation: 
response based, feature based and relation-based knowledge distillation. Each of them is briefly described below [61]. 

 Response based knowledge distillation: It focuses on the response i.e. final output of teacher model. Student model learns 
to mimic the response of teacher model. It is done by calculating and minimizing the distillation loss. Distillation loss is 
the difference between logits of teacher and student model. 

 Feature based knowledge distillation- Here, intermediate layers in the deep networks learn and discriminate specific 
features. These features can be used as knowledge which student model learns from teacher model. Here distillation loss is 
calculated as the difference between feature activation of teacher model and that of student model. 

 Relation based knowledge distillation- Here relationship between feature maps or different data points is used as 
knowledge. This relationship is captured using different ways like correlation between feature maps, graphs, similarity 
matrix, feature embeddings or probabilistic distribution based on feature representations. 

Various approaches have been used to make student model learn from teacher model in terms of the above three types. Few of 
them are discussed below: 
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In [62], Xie et al. have proposed knowledge distillation method where student learns representational features from teacher 
model using parametric correlation. For larger feature maps it becomes difficult to calculate correlations between spatial locations. 
But this issue was overcome by splitting the feature maps into many patches. Then distillation is performed for each patch using 
one to all patch. In [63], Sucheng et al. have proposed a method based on cross inductive bias. Authors have stated that inductive 
bias in teacher model matters more than their accuracy. If multiple such teacher models with different indictive bias are used then 
student model can learn variety of knowledge from them. Cross inductive bias vision transformer was proposed which gave better 
performance using cross inductive bias distillation method. In [64], Touvron et al. have proposed a knowledge distillation method 
based on distillation tokens specific to transformers. Distillation tokens which are same as that of the class tokens reproduce the 
labels estimated by teacher model using attention. Both these tokens interact within the transformer. Here distillation tokens pre 
learn from ConvoNet teacher. In [65], Shixinng et al have proposed logit based knowledge distillation combined with pruning and 
layer skipping. They have observed 50 % decrease in FLOPs without affecting the accuracy of the model. Yufan liu et al have 
proposed cross architecture knowledge distillation in [66]. It can distill the knowledge between cross architectures like from CNN 
to transformers or vice versa. Xiao et al.in [67] and Lin et al. in [68], authors have proposed supervised masked knowledge 
distillation which is suitable for few shot transformers. This method enables intra class knowledge distillation at class level as well 
as token level by incorporation label information into self-distillation.  

Knowledge distillation framework for semantic segmentation has been proposed by R Liu et al. in 2022 [69]. Here student 
transformers learn by distilling feature maps and patch embeddings of teacher transformers. It skips the long pre-training process 
and decreases the FLOPs by more than 85.0%. Authors have proposed two modules to realize feature map distillation and patch 
embedding distillation, respectively: 1) Cross Selective Fusion (CSF): This module makes knowledge transfer possible between 
cross-stage features through channel attention and feature map distillation within hierarchical transformers; 2) Patch Embedding 
Alignment (PEA) performs dimensional transformation enables the patch embedding distillation. 

Maohui et al. have proposed knowledge distillation in ViTs for semantic segmentation purpose in 2024 [70]. In this paper, 
authors match the output queries of the student and teacher models to enable a query-based knowledge distillation scheme. Using 
this approach it has been possible to perform knowledge distillation where the student models can have a lower number of queries 
and the backbone can be changed from a Transformer architecture to a convolutional neural network architecture. Feature-based 
method known as ViTKD, which mimics the shallow layers and generates the deep layer in the teacher is proposed by Yang et al. 
[71]. ViTKD leads to consistent and significant improvements in the students. 

Omar et al. [72] have proposed Hybrid Data-efficient Knowledge Distillation (HDKD) model. Here student is hybrid model 
and teacher is CNN model. Hybrid student leverages the strengths of both convolutions and transformers and shares the 
convolutional structure with the teacher model. This enables the direct application of feature distillation without losing any 
information or any kind of computational burden.  

There are two major challenges in applying KD on ViTs: Positional encoding and lack of inductive bias in ViTs. 
 Positional Encoding in ViTs: It provides order and type of information about input tokens. ViTs do not have inherent 

spatial locality like in CNN. Hence ViTs rely on positional encoding.  
 Lack of inductive bias in ViTs: Like in CNN, ViTs don’t have inductive bias. It makes their generalization ability poor 

and learning ability lesser when model is trained on less amount of data. 

V. CHALLENGES AND FUTURE RESEARCH DIRECTIONS 

Deployment of ViTs on resource constrained devices is a big challenge due to heavy computational load in ViTs that incurs 
due to self-attention mechanism. Now pruning, quantization, knowledge distillation and compact design architecture make it 
possible to deploy these models on edge devices but some areas need to be explored for real world applications to avoid 
complexities. Pruning reduces number of weights by eliminating less important weights. It makes model sparse. But it does not 
always lead to less memory usage or faster computation on GPU hardware. Because GPUs are meant to run dense matrix 
operations faster. For sparse operations GPU hardware needs to specially optimized which is rare. Hence frameworks with 
reconfigurations in both hardware and software is required so that it will be able to tackle the challenge of sparsity.  

Therefore, developing a training-efficient or finetune free pruning techniques may be a possible solution and need more 
attention in the near future for efficient deployment on the edge. Automating the model design by applying techniques of pruning, 
quantization with the help of Neural Architecture Search (NAS) [73] that uses reinforcement learning, can be a possible path for 
further research. 

VI. CONCLUSION 

This paper surveys about how vision transformers can be deployed on edge devices, what are the different challenges posed 
while using such computation intensive models on edge devices and how to overcome these challenges. 

Compact architectures are designed from scratch such that ViT can be used on edge devices with fewer parameters and less 
computational cost. Pruning eliminates unwanted weights, neurons or attention heads from trained model of ViT to reduce model 
size and computational cost without affecting the accuracy of the model. Quantization reduces 32-bit floating-point operations to 
8-bit integer operations. It speeds up the computations and reduces memory requirement of ViT. In knowledge distillation, smaller 
model is trained using larger (parent) model with comparatively fewer parameters. Mostly used parameters to evaluate the 
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performance of ViT models include number of trainable parameters, accuracy and FLOPs. Each of these four methods results in 
reduction in trainable parameters, computational cost and memory usage while maintaining the acceptable accuracy of the model.   
Maintaining trade-off between performance of the model and compression of the model is very crucial for real world applications.  

To handle these challenges, optimized hardware design, reconfiguring hardware-software to make optimum use of model for 
diverse applications, automating the model design by neural architecture search are possible directions for future research. 
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