

A 520k (18 900, 17 010) Array Dispersion LDPC
Decoder Architectures through NAND Flash

Memory
Shaik.Saiyeeduddin, Jabeena shaik,,M.Tech

Department of Electronics and communication Engineering
Quba College of Engineering & Technology,Venkatachalam

(JNTU Anantapur)

Abstract— Although Latin square is a well-known algorithm to
construct low-density parity-check (LDPC) codes for satisfying long
code length, high code-rate, good correcting capability, and low
error floor, it has a drawback of large sub matrix that the hardware
implementation will be suffered from large barrel shifter and worse
routing congestion in fitting NAND flash applications. In this paper, a
top-down design methodology, which not only goes through code
construction and optimization, but also hardware implementation to
meet all the critical requirements, is presented. A two-step array
dispersion algorithm is proposed to construct long LDPC codes with
a small sub matrix size. Then, the constructed LDPC code is
optimized by masking matrix to obtain better bit-error rate (BER)
performance and lower error-floor. In addition, our LDPC codes
have a diagonal-like structure in the parity-check matrix leading to a
proposed hybrid storage architecture, which has the advantages of
better area efficiency and large enough data bandwidth for high
decoding throughput. To be adopted for NAND flash applications, an
(18 900, 17 010) LDPC code with a code-rate of 0.9 and sub matrix
size of 63 is constructed and the field-programmable gate array
simulations show that the error floor is successfully suppressed down

to BER of 10
−12

. An LDPC decoder using normalized min-sum

variable-node-centric sequential scheduling decoding algorithm is
implemented in UMC 90-nm CMOS process. The post layout result
shows that the proposed LDPC decoder can achieve a throughput of
1.58 Gb/s at six iterations with a gate count of 520k under a clock
frequency of 166.6 MHz It meets the throughput requirement of both
NAND flash memories with Toggle double data rate 1.0 and open
NAND flash interface 2.3 NAND interfaces.

Index Terms— Channel coding, low-density parity-check

(LDPC) codes, NAND flash memory, sequential scheduling.

I. INTRODUCTION

NOWADAYS, the NAND flash memory is the main

storage component in mobile applications, such as mobile
phones, tablet, flash drive, and solid-state disk. Its advantages

include high program/read speed, shock-resistance,
lightweight, and small form-factor. As the applications of

multimedia grow explosively, the demand of larger storage
capacity keeps increasing. To satisfy the demand, the memory
vendors continue boosting the capacity by technology scaling
and storing the multiple-bit-per-cell technique. Several state-
of-the-art works [1], [2] achieve 128-Gb storage capacity by

scaling technology toward 2Xnm and storing 3-bit data in

Manuscript received November 16, 2014; revised February 13, 2015, April
24, 2015, and June 27, 2015; accepted July 11, 2015. Date of publication
August 18, 2015; date of current version March 18, 2016. This work was
supported by the National Science Council of Taiwan under Project NSC 101-
2628-E-009-013-MY3.

The authors are with the Department of Electronics Engineering, Institute of
Electronics, National Chiao Tung University, Hsinchu 300, Taiwan (e-mail:
chu.ee97g@nctu.edu.tw; hcchang@mail.nctu.edu.tw).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

one memory cell. However, these aggressive techniques come
along with unavoidable drawbacks. Due to the physical limita-
tion and reduced noise margin, the raw bit-error-rate (RBER)
keeps increasing and this severely degrades the reliability of
NAND flash memory. Error correction code (ECC) is an
efficient approach to recover the user data from errors. In
current applications, BCH code [3], [4] is the most commonly
used ECC which can guarantee t-error correcting capability.
For a BCH code, the size of parity bits is almost linearly
proportional to its t-error correcting capability. As the storage
space for parity bits in flash memory is limited, the correcting
capability of BCH code cannot be increased unlimitedly. To
overcome the increasing RBER, advanced ECC, such as low-
density parity-check (LDPC) codes [5], is widely researched
and considered as the next-generation ECC for flash memory
application due to its excellent correcting capability.

LDPC codes were first proposed by Gallager in 1962 and

then rediscovered in the late 1990s [6], [7]. An LDPC code is
defined by an m × n parity-check matrix H with m check
nodes (CNs) and n variable nodes (VNs). The parameters

column degree (dv) and row degree (dc) represent the number

of CNs/VNs connected to each VN/CN. LDPC codes can be
decoded using belief propagation (BP) algorithm, which
iteratively exchanges the messages between the CNs and the
VNs. The two most famous BP decoding algorithms are sum–
product algorithm [7] and min-sum algorithm (MSA) [8].
Chen and Fossorier [9] presented a normalized MSA, which
compensates the performance loss of MSA by multiplying a
scaling factor in CN update. In these few years, many
researchers and industrial companies are working on how to
employ LDPC codes in flash memory applications [10]–[12].
The research topics mainly focus on the code construction,
hardware implementation, and the methods of getting soft
information from flash memory.

To be adopted for NAND flash application, the LDPC codes
must satisfy the critical requirements, such as long code
length, high code-rate, good correcting capability, and low
error-floor. Latin square [13], [14] is one of the most famous
algebraic algorithms [13]–[16] to construct LDPC codes for
satisfying the requirements above. In addition, Latin codes are
quasi-cyclic (QC) LDPC codes, which are famous for simply
controls in the routing network. However, it has critical
drawbacks in the aspect of hardware implementa-tion. For
NAND flash applications, the code length and the code-rate of
ECC is suggested to be 1 or 2 kB, and 0.9, respectively [17].
Such Latin codes come along with large row degree and large
submatrix size. In general, VN-centric sequential scheduling
[18] (VSS; also known as

VOL 52 : ISSUE 01 - 2021

PAGE NO: 20

JZU NATURAL SCIENCE || ISSN : 1671-6841

https://naturalscience.fyi/

The remainder of this paper is organized as follows.

In Section II, we present the VSS and its challenges of
hardware implementation for flash memory application. In
Section III, we will present the two-step array dispersion code
construction algorithm and the code optimizations. In Section
IV, we present the overall LDPC decoder architecture with the
proposed hybrid register-memory-based architecture,
implementation results, and comparison. Finally, the
performance analysis of the proposed decoder on real NAND

flash memory and the conclusions are given in Sections V and VI,
respectively.

II. VARIABLE-NODE-CENTRIC SEQUENTIAL

SCHEDULING AND ITS CHALLENGES

In hardware implementation, we adopt the normalized min-
sum VSS [18] (NMS-VSS; also known as shuffled decoding
[19]) in implementation due to large row degree. The NMS-
VSS algorithm not only reduces the hardware overhead of
CNU by completing its update process in several subgroups,
but also provides faster convergence speed of decoding
process. In this section, we will present the NMS-VSS
algorithm and its challenges of hardware implementation for
flash memory application in detail.

A. Review of NMS-VSS Algorithm

An LDPC code is defined by an m × n parity-check matrix

H with m CNs and n VNs. Two parameters column degree (dv

) and row degree (dc) represent the number of CNs/VNs

connected to each VN/CN. Notice that L
w

cv denotes the
check-to-variable (CV) message from CN c to VN v , and

L
w

vc denotes the variable-to-check (VC) message from VN v
to CN c at the wth decoding iteration. Let N(c) be the set of
VNs connected to CN c and let M(v) be the set of CNs
connected to VN v . The VSS divides n VNs into G groups

that each group contains n/ G = NG VNs. Let Ng be the set of
VNs located in the gth groups for g = 0, 1, . . . , G − 1. The
following shows the updating process in gth group at wth
decoding iteration using NMS-VSS.

of Ng , Ng+1, . . . , NG−1 . One complete iteration
represents that G groups of VNs are updated in a
sequential order. At the end of each iteration, the a

posteriori probability Lapp,v value of each VN v is
computed by

L
app,v =

L
init,v + Lw−1 (5)

 c v

c ∈M(v)

B. Hardware Implementation Challenges

As mentioned before, there are several challenges of

implementing large LDPC codes with NMS-VSS algorithm for

flash memory application. They include large barrel shifters and

severe routing congestion due to large sub matrix size, and larger

storage elements due to increase in data bandwidth.

Chen et al. [18] propose a register-based architecture to

achieve high throughput performance. CNUs are implemented

in fully parallel and all CV messages L
w

cv are stored in
registers. Although registers can provide high data bandwidth,
they consume larger area than SRAMs. A 2-kB-length LDPC
code requires a huge amount of registers, which will consume
too large silicon area and is very power consuming.

size (z), dc, and k to be 128, 50, and 2, respectively, the
bandwidth of memory is equal to z × k × (6-bit min. value +

log2(dc)) = 128 × 2 × (6 + 6) = 3072 bits. An SRAM with
such large data bandwidth will have inefficient aspect ratio,
and therefore occupies large silicon area.

Ueng et al. [26] present a first-input first-output (FIFO)-
based CN architecture supporting multiple

application standards.

III. TWO-STEP CODE CONSTRUCTION ALGORITHM
In this section, we introduce the proposed two-level array

dispersion code construction algorithm and advantages on
hardware implementation. The goal of presented algorithm is
to construct large LDPC codes with good correcting
capability, low error floor, and small submatrix size. The two-
step algorithm combines two algorithms, namely, Latin square
[13], [14] and array dispersion [15]. First, it constructs a small
base matrix by Latin square algorithm. Then, we apply the
array dispersion to expand the base matrix into a 2-kB-length
LDPC code. The expanded LDPC codes have a diagonal-like
structure of nonzero submatrices with the same submatrix size
as that of the base matrix.

A. Code Construction Algorithm
In the first step of code construction, we adopt the Latin
square algorithm [13], [14] to construct a base matrix based

on Galois fields (GFs) of 2
q
 . The Latin square algorithms will

construct a large Latin square matrix with size of 2
q
 × 2

q
 .

The entries of matrix are the zero or nonzero elements in GF

(2
q
). Then, we build a small base matrix by selecting r × s

entries from the large matrix, where r ≤ 2
q
 and s ≤ 2

q
 . LDPC

codes which are constructed from different selections of
entries have average good performance [13]. In this paper, we
select the upper left corner of large matrix for simplicity. Each
entry is then mapped to a vector having only one 1 at
corresponding location over GF (2). The size Fig. 1. Base parity-

check matrix HB,binary constructed by Latin square algorithm

of vector is 2
q

 − 1 relating to the number of elements in GF (2
q

)
without zero element. Furthermore, each binary vector is

expanded to a (2
q

 −1)×(2
q

 −1) cyclic sub matrix where each row
is a right cyclic-shift of the row above it. Notice that the detailed
explanation and the property analysis of Latin square code can be
referenced from [13]. Fig. 1 shows the binary base

matrix HB,binary consisting of r ×s

sub matrices.
A i, j represents

 q

− 1, for 0

a sub matrix with a size z of 2 ≤ i < r

and 0 ≤ j < s. Ai, j can be a zero matrix or a cyclic-shift of an

identity matrix. If the HB,binary contains no zero sub matrix, the

column degree dv of HB,binary will be r . Since the Latin square
matrix has a diagonal of zero sub matrix, the column degree of

HB ,binary will be r or r − 1. The null space of HB,binary gives a
QC-LDPC code with the guarantee of no cycle-4.

Then, we apply the masking technique [27] to the base
matrix before going to the second step of code construction.

VOL 52 : ISSUE 01 - 2021

PAGE NO: 21

JZU NATURAL SCIENCE || ISSN : 1671-6841

https://naturalscience.fyi/

Masking refers to the replacement of a set of sub matrices by
zero sub matrices. Since short cycles and small trapping sets
[30] are the root cause of error-floor, using the masking
technique can efficiently reduce the short cycles and small
trapping sets to further improve the BER performance and
suppress the error-floor. As the correcting capability of LDPC
codes depends on several factors, such as code length, degree
distribution, length of girth, and connection of nodes, it is hard
to come out an optimized methodology for searching masking
matrix. The research of the masking technique is still open and
challenging [31]–[33]. In this paper, we apply two rules on the
random searching process. One rule is to suppress error floor
by generating masking matrices, which guarantee the masked
parity-check matrix has no column degree less than 4. Another
one is to keep column degrees as close as possible for better
hardware utilization of VNU design. To speed up the process
of searching the masking matrices, we build up an FPGA
platform for fast emulation and over hundreds of masked
LDPC codes are simulated. We evaluate and compare the
BER of each masked code and the one with the best BER
performance is chosen.

In the second step of code construction, we adopt the array
dispersion [15] to expand the masked base LDPC code to a
large one. LDPC codes constructed by this dispersion
technique not only have good erasure-burst-correction
capabilities, but also perform well over the additive white
Gaussian noise (AWGN) and binary random erasure channels

[15]. Fig. 2 shows the array dispersion. A matrix A(t,t) with
t × t sub matrices is divided into an upper matrix AU (t,t) and a

lower matrix AL(t,t). Then, we construct a large matrix by

combining the AU (t,t) and AL(t,t) in a diagonal structure with a

expand factor of l. Finally, we have a large matrix H(lt,lt) which
consists of lt × lt sub matrices. The column degree
B. Proposed LDPC Code and Simulation Results
u
In this paper, we propose an (18 900, 17 010) LDPC code with a
code-rate of 0.9 for NAND flash memory applications. In the first

step, we construct a HB,binary with 6 × 60 sub-matrices based on

GFs of 2
6

. The null space of HB,binary g distribution and the

sub matrix size of H(lt,lt) are the same as those of the matrix

A(t,t).

It is obvious that the matrix hasLDPC codes satisfying row-
column-constraint [27], whichdefines that no two rows
(columns) that have more than one place where they both have
1 in a matrix, are guaranteed that the parity-check matrix
contains no cycle-4. Latin code is one of them and this
property is preserved after array dispersion. As shown in Fig.

2, there is only one upper triangle AU and one lower triangle

AL in each column or row group in the expanded matrix. Since

AU and AL are decomposed from the Latin square matrix,
grouping them horizontally or vertically will not violate the
RC-constraint. Therefore, the property of having no cycle-4 is
preserved in the LDPC codes after array dispersion.

an (3780, 3459) LDPC code with 57 redundant rows and a code-
rate of 0.915. The sub matrix size is 63 and the column degree is

5 or 6. Next, a masking matrix is applied to HB,binary to improve

its performance. To preserve the column degree of each column
group as close as possible, only one submatrix in each column
group will be masked, leading to the column degree of the
masked matrix to be 4 or 5.

After generating about 500 sets of masking matrices ran-
domly with the above criteria, we evaluate and compare the
BER of each masked code at a specified SNR point around

BER of 10
−7

 and then the code with the lowest BER will be
chosen. The FPGA simulations of about 500 codes take about
two weeks. The null space of the masked parity-check matrix
gives an (3780, 3402) LDPC code with no redundant rows and
a code-rate of 0.9. Fig. 3 shows the frame error rate (FER) and
BER performances of both masked and unmasked base LDPC
codes.

In the second step, the base matrix will be divided into multiple

sub matrices and expanded by array dispersion. Note that using
the masking technique will affect the number of redundant rows,
but the existence of redundant rows does not affect the procedure
of array dispersion. The base matrix is always consisted of 6 × 60
sub matrices and no row redundant elimination is performed. The

masked base matrix HB,binary is then divided into ten 6× 6

matrices HB,binary,q for 0 ≤ q < 10 by dividing columns into ten

groups and it can be presented
as

H

B,binary = {
H

B,binary,0, . . . ,
H

B,binary,9}
. Each

H

B,binary,q

consisting of 6 × 6 sub matrices is expanded with a factor of
5 separately by array dispersion and then a larger matrix.

As shown in Fig. 6, the proposed hybrid storage
architecture consists of six blocks of registers and a
large two-port SRAM. The registers in each block store
the messages, which are going to be updated by VNUs
and CNUs at each cycle. After the update, the messages
that will be processed in the next decoding cycle are
stored in the registers again. This kind of messages is
denoted as the immediate-use data. At the same time,
the messages that are not needed in the next decoding
cycle are stored in the SRAM for later use. This kind of
messages is denoted as the nonimmediate-use data. Fig.
6 shows more details of the access behavior of the. .

VOL 52 : ISSUE 01 - 2021

PAGE NO: 22

JZU NATURAL SCIENCE || ISSN : 1671-6841

https://naturalscience.fyi/

.

Let us recall the CNU from [18], there is a local sorter to get
the minimum value from VNs located in one column group.
Since our parity-check matrix is divided into 300 groups, there
are 63 VNs in one column group. Each CNU out of 63 CNUs in
one CNU block will receive the messages from one VN
accordingly. In the other words, there is only one new message
taken as an input to the sorter in each CNU. We can remove the
local sorter from the CNU. It is not surprised that the CNU is
now equivalent to the CNU with k = 2 in [25]. For each CNU, the
Since the decoder updates 63 VNs of one column block at
each cycle, the data bandwidth of SRAM storing the channel
values is (63 × 2 bit) = 126 bits. All the channel values are
stored in a 300 × 126 single-port SRAM. In the beginning of
the decoding process, the hard or soft-2-bit channel values are
mapped to predefined log-likelihood ratio (LLR). The hard
decision of VNU is written to a 300 × 63 single-port SRAM at
each cycle. Finally, the two-port SRAMs storing min-and-
index messages and global sign bits are replaced by single-
port SRAMs to reduce silicon area by operating the SRAMs at
double frequency. Note that the ECC protection for SRAM is
not adopted in this paper. The NAND flash controller usually
adopts the read retry technique [12] to reread and redecode the
data multiple times if correction fails. In addition, the failure
of decoding due to soft error in SRAM will not lead to a
system crash. In general, the NAND flash controller will report
a read failure to the OS system and the system will handle the
failure as an exception case.

registers store the min-and-index messages and 1-bit global

sign bits. Meanwhile, the min-and-index message refers to the

first and second minimum values and their indices.
The number of quantization bits q in our proposed decoder is

assumed as 4 and the row degree dc is around 50. The min-

and-index message is 2 × ((q − 1) + log2(dc)) = 2 × (3 + 6) =
18 bits in total. The data bandwidth of one

B. Overall Architecture

Fig. 8 shows the overall decoder architecture and the details
of one CNU block. There are one VNU block and six CNU
blocks, where a VNU block includes 63 VNUs and each CNU
block includes 63 sorters, 63 sign operation units, and two
barrel shifters for messages and global sign bit. The data flows
start from registers, then go through VNUs, CNUs, and barrel
shifters. Finally, the data are written back to registers or
SRAMs. As presented in Section II, the CV message includes

the min-and-index message and global sign bit. MCNU, Bk

represents the 63 min-and-index messages stored in the

registers of block Bk for 0 ≤ k < 6. It is sent to the sorters in

block Bk . Then, the min message LC X,m, BK is selected from

MCNU, Bk by the first/second min selector and sent to VNU

C. Implementation Results and Comparison

Finally, we implement the proposed decoder architecture
using UMC 90 nm. The input quantization and message
quantization in decoder are soft-2-bit and 4-bit, respectively.
The maximum number of iteration is 20 and early termi-
nation is adopted. The postlayout simulation shows that the
presented decoder can achieve a throughput of 1.58 Gb/s with

flash memory. The gate count is reported as 520k gates as we
resynthesis the postlayout net-list (including SRAMs). Fig. 13
shows the place-and-route result and gate count of major
modules. The FER and BER performances over AWGN
channel are provided in Fig. 11.

Table I lists the comparisons with several state-of-the-art

works implementing NMS-VSS algorithm [18], [25], [26] and

they are designed for wireless communication application.
Meanwhile, Kim and Sung [34] present an LDPC decoder

designed for NAND flash application with a very long code

length, but the decoding algorithm is not NMS-VSS. In addi-

tion, we compare our work with two designs [23], [24]

implementing row-based shuffle decoding algorithm for IEEE
802.3an [36]. The LDPC codes adopted in IEEE 802.3an have

similar properties, such as high code-rate and low error floor,

with the codes adopted for NAND flash application. For fair

comparison, the area of all LDPC decoders is normalized to

90 nm. The throughput-to-area ratio (TAR) [35] is computed

as TAR = throughput (in Gb/s)/scaled are taken.

VI. CONCLUSION

We have demonstrated the proposed design methodology
consisting of code construction, optimization, and hardware
implementation. The presented two-step approach can con-
struct LDPC codes not only satisfy long code length, high
code-rate, good correcting capability, and low error floor, but
also have hardware-friendly features, such as small submatrix
size and diagonal-like structure of nonzero elements. The code
optimization adopts masking to further improve the BER

VOL 52 : ISSUE 01 - 2021

PAGE NO: 23

JZU NATURAL SCIENCE || ISSN : 1671-6841

https://naturalscience.fyi/

REFERENCES

[1] Y. Li et al., “128 Gb 3 b/cell NAND flash memory in 19 nm technology

with 18 Mb/s write rate and 400 Mb/s toggle mode,” in IEEE Int. Solid-
State Circuits Conf. Dig. Tech. Papers (ISSCC), Feb. 2012,
pp. 436–437.

[2] G. Naso et al., “A 128 Gb 3 b/cell NAND flash design using 20 nm
planar-cell technology,” in IEEE Int. Solid-State Circuits Conf. Dig.
Tech. Papers (ISSCC), Feb. 2013, pp. 218–219.

[3] R. C. Bose and D. K. Ray-Chaudhuri, “On a class of error correcting
binary group codes,” Inf. Control, vol. 3, no. 1, pp. 68–79, 1960.

[4] A. Hocquenghem, “Codes correcterus d’erreurs,” Chiffres, vol. 2,
pp. 117–156, Sep. 1959.

[5] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inf.
Theory, vol. 8, no. 1, pp. 21–28, Jan. 1962.

[6] D. J. C. MacKay and R. M. Neal, “Good codes based on very sparse
matrices,” in Proc. 5th IMA Conf. Cryptogr. Coding, Oct. 1995,
pp. 100–111.

[7] D. J. C. MacKay, “Good error-correcting codes based on very sparse
matrices,” IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399–431, Mar.
1999.

[8] M. P. C. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity
iterative decoding of low-density parity check codes based on belief
propagation,” IEEE Trans. Commun., vol. 47, no. 5, pp. 673–680, May
1999.

[9] J. Chen and M. P. C. Fossorier, “Density evolution for two improved
BP-based decoding algorithms of LDPC codes,” IEEE Commun. Lett.,
vol. 6, no. 5, pp. 208–210, May 2002.

[10] J. Yang, “High-efficiency SSD for reliable data storage systems,”
presented at the Flash Memory Summit, 2011.

[11] S. Tanakamaru, Y. Yanagihara, and K. Takeuchi, “Over-10×-extended-
lifetime 76%-reduced-error solid-state drives (SSDs) with error-
prediction LDPC architecture and error-recovery scheme,” in IEEE Int.
Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC), Feb. 2012,
pp. 424–426.

[12] K.-C. Ho, P.-C. Fang, H.-P. Li, C.-Y. M. Wang, and H.-C. Chang, “A
45 nm 6 b/cell charge-trapping flash memory using LDPC-based ECC
and drift-immune soft-sensing engine,” in IEEE Int. Solid-State Circuits
Conf. Dig. Tech. Papers (ISSCC), Feb. 2013, pp. 222–223.

[13] L. Zhang, Q. Huang, S. Lin, K. Abdel-Ghaffar, and I. F. Blake, “Quasi-
cyclic LDPC codes: An algebraic construction, rank analysis, and codes
on latin squares,” IEEE Trans. Commun., vol. 58, no. 11,
pp. 3126–3139, Nov. 2010.

VOL 52 : ISSUE 01 - 2021

PAGE NO: 24

JZU NATURAL SCIENCE || ISSN : 1671-6841

https://naturalscience.fyi/

.

VOL 52 : ISSUE 01 - 2021

PAGE NO: 25

JZU NATURAL SCIENCE || ISSN : 1671-6841

https://naturalscience.fyi/

