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Abstract— Although Latin square is a well-known algorithm to 
construct low-density parity-check (LDPC) codes for satisfying long 
code length, high code-rate, good correcting capability, and low 
error floor, it has a drawback of large sub matrix that the hardware 
implementation will be suffered from large barrel shifter and worse 
routing congestion in fitting NAND flash applications. In this paper, a 
top-down design methodology, which not only goes through code 
construction and optimization, but also hardware implementation to 
meet all the critical requirements, is presented. A two-step array 
dispersion algorithm is proposed to construct long LDPC codes with 
a small sub matrix size. Then, the constructed LDPC code is 
optimized by masking matrix to obtain better bit-error rate (BER) 
performance and lower error-floor. In addition, our LDPC codes 
have a diagonal-like structure in the parity-check matrix leading to a 
proposed hybrid storage architecture, which has the advantages of 
better area efficiency and large enough data bandwidth for high 
decoding throughput. To be adopted for NAND flash applications, an 
(18 900, 17 010) LDPC code with a code-rate of 0.9 and sub matrix 
size of 63 is constructed and the field-programmable gate array 
simulations show that the error floor is successfully suppressed down 

to BER of 10
−12

. An LDPC decoder using normalized min-sum 

variable-node-centric sequential scheduling decoding algorithm is 
implemented in UMC 90-nm CMOS process. The post layout result 
shows that the proposed LDPC decoder can achieve a throughput of 
1.58 Gb/s at six iterations with a gate count of 520k under a clock 
frequency of 166.6 MHz It meets the throughput requirement of both 
NAND flash memories with Toggle double data rate 1.0 and open 
NAND flash interface 2.3 NAND interfaces. 

 
Index Terms— Channel coding, low-density parity-check 

(LDPC) codes, NAND flash memory, sequential scheduling. 
 

I. INTRODUCTION 

NOWADAYS,  the  NAND  flash  memory  is  the  main 

storage  component  in  mobile  applications,  such  as mobile 
phones, tablet, flash drive, and solid-state disk. Its advantages 

include high program/read speed, shock-resistance, 
lightweight, and small form-factor. As the applications of 

multimedia grow explosively, the demand of larger storage 
capacity keeps increasing. To satisfy the demand, the memory 
vendors continue boosting the capacity by technology scaling 
and storing the multiple-bit-per-cell technique. Several state-
of-the-art works [1], [2] achieve 128-Gb storage capacity by 

scaling technology toward 2Xnm and storing 3-bit data in 
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one memory cell. However, these aggressive techniques come 
along with unavoidable drawbacks. Due to the physical limita-
tion and reduced noise margin, the raw bit-error-rate (RBER) 
keeps increasing and this severely degrades the reliability of 
NAND flash memory. Error correction code (ECC) is an 
efficient approach to recover the user data from errors. In 
current applications, BCH code [3], [4] is the most commonly 
used ECC which can guarantee t-error correcting capability. 
For a BCH code, the size of parity bits is almost linearly 
proportional to its t-error correcting capability. As the storage 
space for parity bits in flash memory is limited, the correcting 
capability of BCH code cannot be increased unlimitedly. To 
overcome the increasing RBER, advanced ECC, such as low-
density parity-check (LDPC) codes [5], is widely researched 
and considered as the next-generation ECC for flash memory 
application due to its excellent correcting capability. 

 
LDPC codes were first proposed by Gallager in 1962 and 

then rediscovered in the late 1990s [6], [7]. An LDPC code is 
defined by an m × n parity-check matrix H with m check 
nodes (CNs) and n variable nodes (VNs). The parameters 

column degree (dv ) and row degree (dc) represent the number 

of CNs/VNs connected to each VN/CN. LDPC codes can be 
decoded using belief propagation (BP) algorithm, which 
iteratively exchanges the messages between the CNs and the 
VNs. The two most famous BP decoding algorithms are sum–
product algorithm [7] and min-sum algorithm (MSA) [8]. 
Chen and Fossorier [9] presented a normalized MSA, which 
compensates the performance loss of MSA by multiplying a 
scaling factor in CN update. In these few years, many 
researchers and industrial companies are working on how to 
employ LDPC codes in flash memory applications [10]–[12]. 
The research topics mainly focus on the code construction, 
hardware implementation, and the methods of getting soft 
information from flash memory.  

To be adopted for NAND flash application, the LDPC codes 
must satisfy the critical requirements, such as long code 
length, high code-rate, good correcting capability, and low 
error-floor. Latin square [13], [14] is one of the most famous 
algebraic algorithms [13]–[16] to construct LDPC codes for 
satisfying the requirements above. In addition, Latin codes are 
quasi-cyclic (QC) LDPC codes, which are famous for simply 
controls in the routing network. However, it has critical 
drawbacks in the aspect of hardware implementa-tion. For 
NAND flash applications, the code length and the code-rate of 
ECC is suggested to be 1 or 2 kB, and 0.9, respectively [17]. 
Such Latin codes come along with large row degree and large 
submatrix size. In general, VN-centric sequential scheduling 
[18] (VSS; also known as 

VOL 52 : ISSUE 01 - 2021

PAGE NO: 20

JZU NATURAL SCIENCE || ISSN : 1671-6841

https://naturalscience.fyi/



 
The  remainder  of  this  paper  is  organized  as  follows.  

In Section II, we present the VSS and its challenges of 
hardware implementation for flash memory application. In 
Section III, we will present the two-step array dispersion code 
construction algorithm and the code optimizations. In Section 
IV, we present the overall LDPC decoder architecture with the 
proposed hybrid register-memory-based architecture, 
implementation results, and comparison. Finally, the 
performance analysis of the proposed decoder on real NAND 

flash memory and the conclusions are given in Sections V and VI, 
respectively. 

 
II. VARIABLE-NODE-CENTRIC SEQUENTIAL 

SCHEDULING AND ITS CHALLENGES 
 

In hardware implementation, we adopt the normalized min-
sum VSS [18] (NMS-VSS; also known as shuffled decoding 
[19]) in implementation due to large row degree. The NMS-
VSS algorithm not only reduces the hardware overhead of 
CNU by completing its update process in several subgroups, 
but also provides faster convergence speed of decoding 
process. In this section, we will present the NMS-VSS 
algorithm and its challenges of hardware implementation for 
flash memory application in detail. 

 
A. Review of NMS-VSS Algorithm 
 

An LDPC code is defined by an m × n parity-check matrix 

H with m CNs and n VNs. Two parameters column degree (dv 

) and row degree (dc) represent the number of CNs/VNs 

connected to each VN/CN. Notice that L
w

cv denotes the 
check-to-variable (CV) message from CN c to VN v , and 

L
w

vc denotes the variable-to-check (VC) message from VN v 
to CN c at the wth decoding iteration. Let N(c) be the set of 
VNs connected to CN c and let M(v ) be the set of CNs 
connected to VN v . The VSS divides n VNs into G groups 

that each group contains n/ G = NG VNs. Let Ng be the set of 
VNs located in the gth groups for g = 0, 1, . . . , G − 1. The 
following shows the updating process in gth group at wth 
decoding iteration using NMS-VSS.  

 
 
 
 
 
 
 
 

of Ng , Ng+1, . . . , NG−1 . One complete iteration 
represents that G groups of VNs are updated in a 
sequential order. At the end of each iteration, the a 

posteriori probability Lapp,v value of each VN v is 
computed by 

L 
app,v  = 

L 
init,v  + Lw−1 (5)

  c v  

c ∈M(v ) 
 
 
B. Hardware Implementation Challenges 
 

As mentioned before, there are several challenges of 

implementing large LDPC codes with NMS-VSS algorithm for 

flash memory application. They include large barrel shifters and 

severe routing congestion due to large sub matrix size, and larger 

storage elements due to increase in data bandwidth. 

 
Chen et al. [18] propose a register-based architecture to 

achieve high throughput performance. CNUs are implemented 

in fully parallel and all CV messages L
w

cv are stored in 
registers. Although registers can provide high data bandwidth, 
they consume larger area than SRAMs. A 2-kB-length LDPC 
code requires a huge amount of registers, which will consume 
too large silicon area and is very power consuming.  

size (z), dc, and k to be 128, 50, and 2, respectively, the 
bandwidth of memory is equal to z × k × (6-bit min. value + 

log2(dc) ) = 128 × 2 × (6 + 6) = 3072 bits. An SRAM with 
such large data bandwidth will have inefficient aspect ratio, 
and therefore occupies large silicon area.  

Ueng et al. [26] present a first-input first-output (FIFO)-
based CN architecture supporting multiple 

application standards.  
 

III. TWO-STEP CODE CONSTRUCTION ALGORITHM  
In this section, we introduce the proposed two-level array 

dispersion code construction algorithm and advantages on 
hardware implementation. The goal of presented algorithm is 
to construct large LDPC codes with good correcting 
capability, low error floor, and small submatrix size. The two-
step algorithm combines two algorithms, namely, Latin square 
[13], [14] and array dispersion [15]. First, it constructs a small 
base matrix by Latin square algorithm. Then, we apply the 
array dispersion to expand the base matrix into a 2-kB-length 
LDPC code. The expanded LDPC codes have a diagonal-like 
structure of nonzero submatrices with the same submatrix size 
as that of the base matrix.  
 
A. Code Construction Algorithm  
In the first step of code construction, we adopt the Latin 
square algorithm [13], [14] to construct a base matrix based 

on Galois fields (GFs) of 2
q
 . The Latin square algorithms will 

construct a large Latin square matrix with size of 2
q
 × 2

q
 . 

The entries of matrix are the zero or nonzero elements in GF 

(2
q
 ). Then, we build a small base matrix by selecting r × s 

entries from the large matrix, where r ≤ 2
q
 and s ≤ 2 

q
 . LDPC 

codes which are constructed from different selections of 
entries have average good performance [13]. In this paper, we 
select the upper left corner of large matrix for simplicity. Each 
entry is then mapped to a vector having only one 1 at 
corresponding location over GF (2). The size Fig. 1. Base parity-

check matrix HB,binary constructed by Latin square algorithm 

of vector is 2
q

 − 1 relating to the number of elements in GF (2
q

 ) 
without zero element. Furthermore, each binary vector is 

expanded to a (2
q

 −1)×(2
q

 −1) cyclic sub matrix where each row 
is a right cyclic-shift of the row above it. Notice that the detailed 
explanation and the property analysis of Latin square code can be 
referenced from [13]. Fig. 1 shows the binary base 

matrix HB,binary consisting of r ×s 

sub matrices. 
A i, j represents

 q 

− 1,  for  0 
 

a  sub matrix  with a  size  z  of 2 ≤  i  <  r

and 0 ≤  j < s. Ai, j can be a zero matrix or a cyclic-shift of an

identity matrix. If the HB,binary contains no zero sub matrix, the 

column degree dv of HB,binary will be r . Since the Latin square 
matrix has a diagonal of zero sub matrix, the column degree of 

HB ,binary will be r or r − 1. The null space of HB,binary gives a 
QC-LDPC code with the guarantee of no cycle-4.  

Then, we apply the masking technique [27] to the base 
matrix before going to the second step of code construction. 
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Masking refers to the replacement of a set of sub matrices by 
zero sub matrices. Since short cycles and small trapping sets 
[30] are the root cause of error-floor, using the masking 
technique can efficiently reduce the short cycles and small 
trapping sets to further improve the BER performance and 
suppress the error-floor. As the correcting capability of LDPC 
codes depends on several factors, such as code length, degree 
distribution, length of girth, and connection of nodes, it is hard 
to come out an optimized methodology for searching masking 
matrix. The research of the masking technique is still open and 
challenging [31]–[33]. In this paper, we apply two rules on the 
random searching process. One rule is to suppress error floor 
by generating masking matrices, which guarantee the masked 
parity-check matrix has no column degree less than 4. Another 
one is to keep column degrees as close as possible for better 
hardware utilization of VNU design. To speed up the process 
of searching the masking matrices, we build up an FPGA 
platform for fast emulation and over hundreds of masked 
LDPC codes are simulated. We evaluate and compare the 
BER of each masked code and the one with the best BER 
performance is chosen.  

In the second step of code construction, we adopt the array 
dispersion [15] to expand the masked base LDPC code to a 
large one. LDPC codes constructed by this dispersion 
technique not only have good erasure-burst-correction 
capabilities, but also perform well over the additive white 
Gaussian noise (AWGN) and binary random erasure channels 

[15]. Fig. 2 shows the array dispersion. A matrix A(t,t ) with  
t × t sub matrices is divided into an upper matrix AU (t,t ) and a 

lower matrix AL(t,t ). Then, we construct a large matrix by 

combining the AU (t,t ) and AL(t,t ) in a diagonal structure with a 

expand factor of l. Finally, we have a large matrix H(lt,lt ) which 
consists of lt × lt sub matrices. The column degree 
B. Proposed LDPC Code and Simulation Results 
u  
In this paper, we propose an (18 900, 17 010) LDPC code with a 
code-rate of 0.9 for NAND flash memory applications. In the first 

step, we construct a HB,binary with 6 × 60 sub-matrices based on 

GFs of 2
6

. The null space of HB,binary g distribution and the 

sub matrix size of H(lt,lt ) are the same as those of the matrix 

A(t,t ).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is obvious that the matrix hasLDPC codes satisfying row-
column-constraint [27], whichdefines that no two rows 
(columns) that have more than one place where they both have 
1 in a matrix, are guaranteed that the parity-check matrix 
contains no cycle-4. Latin code is one of them and this 
property is preserved after array dispersion. As shown in Fig. 

2, there is only one upper triangle AU and one lower triangle 

AL in each column or row group in the expanded matrix. Since 

AU and AL are decomposed from the Latin square matrix, 
grouping them horizontally or vertically will not violate the 
RC-constraint. Therefore, the property of having no cycle-4 is 
preserved in the LDPC codes after array dispersion. 
 
an (3780, 3459) LDPC code with 57 redundant rows and a code-
rate of 0.915. The sub matrix size is 63 and the column degree is 

5 or 6. Next, a masking matrix is applied to HB,binary to improve 

its performance. To preserve the column degree of each column 
group as close as possible, only one submatrix in each column 
group will be masked, leading to the column degree of the 
masked matrix to be 4 or 5.  

After generating about 500 sets of masking matrices ran-
domly with the above criteria, we evaluate and compare the 
BER of each masked code at a specified SNR point around 

BER of 10
−7

 and then the code with the lowest BER will be 
chosen. The FPGA simulations of about 500 codes take about 
two weeks. The null space of the masked parity-check matrix 
gives an (3780, 3402) LDPC code with no redundant rows and 
a code-rate of 0.9. Fig. 3 shows the frame error rate (FER) and 
BER performances of both masked and unmasked base LDPC 
codes. 

 
In the second step, the base matrix will be divided into multiple 

sub matrices and expanded by array dispersion. Note that using 
the masking technique will affect the number of redundant rows, 
but the existence of redundant rows does not affect the procedure 
of array dispersion. The base matrix is always consisted of 6 × 60 
sub matrices and no row redundant elimination is performed. The 

masked base matrix HB,binary is then divided into ten 6× 6 

matrices HB,binary,q for 0 ≤ q < 10 by dividing columns into ten 

groups and it can be presented 
as

 
H

B,binary = { 
H

B,binary,0, . . . , 
H

B,binary,9}
. Each

 
H

B,binary,q 

consisting of 6 × 6 sub matrices is expanded with a factor of 
5 separately by array dispersion and then a larger matrix. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As shown in Fig. 6, the proposed hybrid storage 
architecture consists of six blocks of registers and a 
large two-port SRAM. The registers in each block store 
the messages, which are going to be updated by VNUs 
and CNUs at each cycle. After the update, the messages 
that will be processed in the next decoding cycle are 
stored in the registers again. This kind of messages is 
denoted as the immediate-use data. At the same time, 
the messages that are not needed in the next decoding 
cycle are stored in the SRAM for later use. This kind of 
messages is denoted as the nonimmediate-use data. Fig. 
6 shows more details of the access behavior of the. .
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. 

Let us recall the CNU from [18], there is a local sorter to get 
the minimum value from VNs located in one column group. 
Since our parity-check matrix is divided into 300 groups, there 
are 63 VNs in one column group. Each CNU out of 63 CNUs in 
one CNU block will receive the messages from one VN 
accordingly. In the other words, there is only one new message 
taken as an input to the sorter in each CNU. We can remove the 
local sorter from the CNU. It is not surprised that the CNU is 
now equivalent to the CNU with k = 2 in [25]. For each CNU, the 
Since the decoder updates 63 VNs of one column block at 
each cycle, the data bandwidth of SRAM storing the channel 
values is (63 × 2 bit) = 126 bits. All the channel values are 
stored in a 300 × 126 single-port SRAM. In the beginning of 
the decoding process, the hard or soft-2-bit channel values are 
mapped to predefined log-likelihood ratio (LLR). The hard 
decision of VNU is written to a 300 × 63 single-port SRAM at 
each cycle. Finally, the two-port SRAMs storing min-and-
index messages and global sign bits are replaced by single-
port SRAMs to reduce silicon area by operating the SRAMs at 
double frequency. Note that the ECC protection for SRAM is 
not adopted in this paper. The NAND flash controller usually 
adopts the read retry technique [12] to reread and redecode the 
data multiple times if correction fails. In addition, the failure 
of decoding due to soft error in SRAM will not lead to a 
system crash. In general, the NAND flash controller will report 
a read failure to the OS system and the system will handle the 
failure as an exception case. 

registers store the min-and-index messages and 1-bit global 

sign bits. Meanwhile, the min-and-index message refers to the 

first and second minimum values and their indices.  
The number of quantization bits q in our proposed decoder is 

assumed as 4 and the row degree dc is around 50. The min-

and-index message is 2 × ((q − 1) + log2(dc) ) = 2 × (3 + 6) = 
18 bits in total. The data bandwidth of one 

 
B. Overall Architecture 
 

Fig. 8 shows the overall decoder architecture and the details 
of one CNU block. There are one VNU block and six CNU 
blocks, where a VNU block includes 63 VNUs and each CNU 
block includes 63 sorters, 63 sign operation units, and two 
barrel shifters for messages and global sign bit. The data flows 
start from registers, then go through VNUs, CNUs, and barrel 
shifters. Finally, the data are written back to registers or 
SRAMs. As presented in Section II, the CV message includes 

the min-and-index message and global sign bit. MCNU, Bk 

represents the 63 min-and-index messages stored in the 

registers of block Bk for 0 ≤ k < 6. It is sent to the sorters in 

block Bk . Then, the min message LC X,m, BK is selected from 

MCNU, Bk by the first/second min selector and sent to VNU  

C. Implementation Results and Comparison 
 

Finally, we implement the proposed decoder architecture 
using UMC 90 nm. The input quantization and message 
quantization in decoder are soft-2-bit and 4-bit, respectively. 
The maximum number of iteration is 20 and early termi-
nation is adopted. The postlayout simulation shows that the 
presented decoder can achieve a throughput of 1.58 Gb/s with 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
flash memory. The gate count is reported as 520k gates as we 
resynthesis the postlayout net-list (including SRAMs). Fig. 13 
shows the place-and-route result and gate count of major 
modules. The FER and BER performances over AWGN 
channel are provided in Fig. 11.  

Table I lists the comparisons with several state-of-the-art 

works implementing NMS-VSS algorithm [18], [25], [26] and 

they are designed for wireless communication application. 
Meanwhile, Kim and Sung [34] present an LDPC decoder 

designed for NAND flash application with a very long code 

length, but the decoding algorithm is not NMS-VSS. In addi-

tion, we compare our work with two designs [23], [24] 

implementing row-based shuffle decoding algorithm for IEEE 
802.3an [36]. The LDPC codes adopted in IEEE 802.3an have 

similar properties, such as high code-rate and low error floor, 

with the codes adopted for NAND flash application. For fair 

comparison, the area of all LDPC decoders is normalized to 

90 nm. The throughput-to-area ratio (TAR) [35] is computed 

as TAR = throughput (in Gb/s)/scaled are taken. 

 
 

 

VI. CONCLUSION 
 

We have demonstrated the proposed design methodology 
consisting of code construction, optimization, and hardware 
implementation. The presented two-step approach can con-
struct LDPC codes not only satisfy long code length, high 
code-rate, good correcting capability, and low error floor, but 
also have hardware-friendly features, such as small submatrix 
size and diagonal-like structure of nonzero elements. The code 
optimization adopts masking to further improve the BER 
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