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Abstract: The textile and dyeing industries are among the largest contributors to global industrial 
pollution, discharging millions of liters of wastewater containing synthetic dyes each year. These 
compounds, which include azo, anthraquinone, triphenylmethane, vat, and disperse dyes, are 
chemically stable, recalcitrant, and often toxic to aquatic and terrestrial ecosystems. Their persistence 
in the environment causes reduced light penetration, oxygen depletion, mutagenic by-products, and 
heavy metal accumulation, posing long-term risks to ecological balance and public health. 
Conventional treatment methods such as coagulation, flocculation, activated carbon adsorption, and 
advanced oxidation often fail to achieve complete degradation, are cost-intensive, and may generate 
secondary pollution. Bacterial bioremediation has emerged as an eco-friendly and sustainable 
alternative, leveraging the metabolic diversity and enzymatic capacity of bacteria to degrade 
complex dye molecules. Genera such as Pseudomonas, Bacillus, Klebsiella, Enterobacter, 
Acinetobacter, and Aeromonas have demonstrated degradation via enzymatic systems including 
azoreductases, laccases, peroxidases, and oxidoreductases. Complementary mechanisms such as 
biosorption and bioaccumulation further enhance removal efficiency. This review synthesizes 
current knowledge on dye classification, bacterial diversity, enzymatic pathways, and environmental 
factors influencing degradation. Recent technological advances—including immobilized cell 
systems, biofilm reactors, nanobiotechnology, omics-based tools, and synthetic biology—are 
critically discussed, alongside laboratory and field-scale case studies from Asia, Europe, and the 
Americas. Challenges such as incomplete mineralization, formation of toxic intermediates, microbial 
instability, cost, and biosafety issues are analyzed, with emphasis on potential solutions through 
adaptive evolution, low-cost carriers, and engineered microbial consortia. Future prospects highlight 
the integration of omics-guided discovery, CRISPR-mediated genetic engineering, nanomaterial-
assisted catalysis, and circular bioeconomy approaches for sustainable textile wastewater treatment. 
This review underscores bacterial bioremediation as a vital pillar in advancing eco-friendly, scalable, 
and region-specific solutions to dye pollution worldwide. 
Keywords: Textile dyes; Bacterial bioremediation; Enzymatic degradation; Biosorption; 
Wastewater treatment; Environmental pollution; Biofilm reactors. 
 
1. Introduction:  

The textile industry is one of the most resource-intensive sectors, consuming vast amounts of water 
and chemicals [1]. Over 10,000 commercial dyes exist, with annual production exceeding 700,000 
tons [2]. Approximately 10–15% of these dyes are lost during application and discharged into 
wastewater, leading to visible color pollution and chemical toxicity [3,4]. Synthetic dyes are 
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particularly azo dyes which structurally complex, xenobiotic, and resistant to natural degradation 
[5,6]. Their release into aquatic systems reduces light penetration, inhibits photosynthesis, alters 
dissolved oxygen, and produces mutagenic aromatic amines [7,8]. Some dyes also bind with heavy 
metals such as Cr, Pb, and Cu, compounding toxicity [9]. Conventional treatment methods such as 
coagulation, flocculation, adsorption, advanced oxidation are limited by cost, sludge generation, and 
incomplete mineralization [10–12]. Biological approaches, particularly bacterial systems, pro-vide 
adaptability, cost-effectiveness, and eco-compatibility [13–15]. Bacteria are especially advantageous 
due to metabolic versatility, rapid growth, and tolerance to hostile conditions [16]. Genera such as 
Pseudomonas, Bacillus, Enterobacter, Klebsiella, Acinetobacter, and Aeromonas degrade a range of 
dyes via enzymes like azoreductases, laccases, and peroxidases [17–20]. Complementary 
mechanisms such as bio-sorption and bioaccumulation further contribute [21,22]. 

This review consolidates current understanding of bacterial dye bioremediation. It begins with the 
classification of synthetic dyes and their environmental impact, followed by a discussion of bacterial 
diversity and mechanisms of degradation. Key factors influencing biodegradation efficiency are then 
examined, including physicochemical and operational parameters. The review also highlights 
technological innovations such as immobilized systems, biofilm reactors, nanobiotechnology, and 
synthetic biology. Case studies and international applications are presented to illustrate practical 
relevance, while limitations and challenges are critically analyzed. Finally, future prospects for 
scalable, sustainable, and region-specific wastewater treatment strategies are discussed. 
 
2. Classification of Dyes and Environmental Impact: 

Synthetic dyes are categorized based on their chemical structure, chromophores, and application 
method. Azo dyes dominate, representing ~60–70% of total production worldwide [23,24]. Other 
important groups include anthraquinone, triphenylmethane, reactive, disperse, vat, and sulfur dyes 
[25]. Discharge of dyes into aquatic systems leads to: Reduced light penetration that cause inhibition 
of photosynthesis [26]; Decreased oxygen levels, impairing aquatic fauna [27]; Toxic and mutagenic 
aromatic amines formed upon azo bond cleavage [28,29]; Accumulation of heavy metals from dye 
formulations [30]. 

 
Table 1. Classification of major synthetic dyes, examples, applications, and 

environmental impacts 

Dye Class Examples Applications 
Environmental 

Impact 
References 

Azo dyes 
Methyl red, 

Congo red, RB5 
Textile, leather, 

paper 

Breakdown releases 
aromatic amines; 
mutagenic and 
carcinogenic 

[23–
25,28,29] 

Anthraqui
none 

Reactive blue 
19, Disperse 

blue 

Denim, 
polyester, 
plastics 

Highly stable 
aromatic rings; 

resistant to 
biodegradation 

[25,31] 

Triphenyl
methane 

Malachite green, 
Crystal violet 

Textile, inks, 
biocides 

Endocrine disruption; 
toxic to aquatic life 

[7,32] 

Reactive 
dyes 

Remazol brilliant 
blue R 

Cotton, cellulose 
fibers 

High solubility; strong 
covalent binding; 

residual dye persists 
in effluent 

[2,33] 
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Disperse 
dyes 

Disperse orange 
3, Disperse blue 

Polyester, 
synthetic fibers 

Low solubility; adsorb 
to sediments; toxic to 

algae 
[3,34] 

Sulfur 
dyes 

Sulfur black 1 Cotton, denim 
Release sulfides; 

contribute to COD, 
odor problems 

[9] 

Vat dyes 
Indigo, Vat yellow 

1 
Denim, cellulose 

fibers 

Alkaline dyeing 
effluents; sediment 

accumulation 
[8,35] 

 

3. Bacterial Agents and Mechanisms in Dye Degradation 

Bacteria are highly adaptable and efficient for dye degradation due to their metabolic plasticity [36]. 
Mechanisms include enzymatic degradation, biosorption, and bioaccumulation [37]. Microbial 
diversity plays a significant role in the bio-degradation of textile dyes, with both Gram-negative and 
Gram-positive bacteria contributing to the process. Among the Gram-negative group, genera such as 
Pseudomonas, Enterobacter, Klebsiella, Xenophilus, and Alcaligenes are commonly reported for 
their dye-degrading capabilities [12,14]. In contrast, Gram-positive bacteria like Bacillus, 
Lysinibacillus, and Rhodococcus have also been widely documented for their efficiency in breaking 
down complex dye molecules [13,19]. Additionally, extremophilic microbes, including halophiles 
and alkaliphiles, show re-markable adaptation to harsh textile effluent environments, making them 
promising candidates for bioremediation [17]. Beyond individual strains, microbial consortia 
composed of multiple bacterial species often demonstrate higher efficiency and stability in dye 
degradation compared to mono-cultures, owing to their synergistic metabolic interactions [14,20].  

Enzymatic mechanisms play a crucial role in the degra-dation of textile dyes. Azoreductases catalyze 
the reductive cleavage of azo bonds, leading to the breakdown of complex azo dyes into simpler, 
often less toxic, aromatic amines [6,38]. Laccases, which are multicopper oxidases, facilitate the 
oxidation of phenolic and non-phenolic compounds, thereby contributing to the decolorization and 
detoxification of dye-contaminated effluents [18]. Similarly, peroxidases, including lignin 
peroxidase, manganese peroxidase, and dye-decolorizing peroxidases (DyP), are capable of 
degrading a wide range of aromatic dye structures through oxidative reactions, making them highly 
effective in bioremediation processes [19].  

Table 2. Representative bacterial strains, enzymes, and target dyes 

Bacterial Strain Enzyme(s) Dyes Degraded Reference(s) 

Pseudomonas 
putida 

Azoreductase, 
Laccase 

Congo red, RB5 [12,24] 

Bacillus subtilis 
Laccase, Mn-
peroxidase 

Malachite green, 
Crystal violet 

[4,18] 

Enterobacter 
cloacae 

Azoreductase Methyl red, Orange II [15] 

Lysinibacillus 
sphaericus 

Peroxidases, 
Azoreductase 

Reactive blue 19, 
Disperse orange 

[16] 

Xenophilus 
azovorans 

Azoreductase Sulfonated azo dyes [6,23] 

Rhodococcus 
erythropolis 

Laccase-like 
oxidases 

Anthraquinone dyes [19] 
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Alcaligenes 
aquatilis 

Azoreductase, 
Peroxidase 

Azo dyes [13] 

 

Microorganisms employ both passive and active strategies to remove dyes from textile effluents. 
One of the major passive mechanisms is biosorption, in which dye molecules bind to the microbial 
cell wall through electrostatic interactions, hydrogen bonding, or van der Waals forces, allowing 
rapid removal of dyes without metabolic activity [7]. An-other important process is bioaccumulation, 
where dyes are actively transported into microbial cells and subsequently subjected to intracellular 
degradation pathways, often in-volving specific enzymes and cofactors [15]. Together, these 
mechanisms contribute significantly to reducing dye concentrations in contaminated environments. 

4. Factors Influencing Bacterial Dye Degradation 

The efficiency of bacterial dye degradation is strongly influenced by both physicochemical and 
biological factors [39]. Among these, pH and temperature play a crucial role, with optimal 
degradation typically observed within a pH range of 6.5–8.0 and temperatures between 30–40 °C 
[4,17]. Oxygen availability is another key determinant, as azo bond cleavage generally occurs under 
anaerobic conditions, while complete mineralization of the dye molecules often requires subsequent 
aerobic steps [6,11]. The presence of carbon and nitrogen sources, such as glucose and peptone, 
enhances microbial activity by providing additional energy and promoting electron transfer during 
dye reduction [14,17].  

Table 3. Factors influencing bacterial dye degradation 

Factor Optimum/Effect Impact Reference(s) 

pH 6.5–8.0 
Enzyme stability, 

azoreductase activity 
[4,17] 

Temperature 
30–40 °C 

(mesophiles); 55 °C 
max 

Enhances metabolic rate, 
extreme values denature 

[19,39] 

Oxygen 
Anaerobic → azo 

cleavage; Aerobic → 
mineralization 

Complete degradation 
via sequential phases 

[6,11] 

Carbon source 
Glucose, sucrose, 

acetate 
Provides NADH for 

reductases 
[14,17] 

Nitrogen 
source 

Yeast extract, 
peptone 

Promotes biomass and 
enzyme synthesis 

[13,17] 

Dye 
concentration 

Optimal 50–200 
mg/L; inhibitory >500 

High levels cause 
oxidative stress 

[7,2] 

Salinity & 
metals 

<5% salinity optimal; 
halophiles survive up 

to 10% 

Salts/metals inhibit 
unless tolerant strains 

used 
[3,40] 

 

However, excessively high dye concentrations, especially above 500 mg/L, can be inhibitory to 
bacterial growth and enzymatic activity [7,2]. Furthermore, the presence of heavy metals and high 
salinity in textile effluents exerts additional stress on microorganisms, limiting degradation 
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efficiency in most species. Notably, halotolerant and metal-resistant bacteria are often better adapted 
to persist and function under such extreme conditions [3,40]. 

5. Technological Advances in Bacterial Bioremediation 

Although laboratory-scale systems for bacterial dye degradation often show promising results, their 
performance tends to decline when applied to complex industrial effluents. To address this limitation, 
several technological innovations have been developed to enhance efficiency and stability. One 
approach involves the use of immobilized cells, where bacteria are entrapped in carriers such as 
alginate beads or biochar, thereby increasing their reusability and tolerance to toxic compounds 
[3,12].  

Similarly, biofilm-based systems, including Moving Bed Biofilm Reactors (MBBR) and Fluidized 
Bed Reactors (FBR), provide enhanced resilience and adaptability com-pared to planktonic cultures 
[2,19].  Advances in nanobiotechnology have also contributed significantly, as nanoparticles can 
accelerate electron transfer processes and improve the catalytic activity of dye-degrading enzymes 
[41]. Furthermore, the integration of omics tools—such as genomics, proteomics, and 
metabolomics—has facilitated the discovery of novel biodegradation pathways and the identification 
of key functional genes [10,16].  

More recently, synthetic biology approaches, including CRISPR-based genetic engineering, have 
been employed to construct bacterial strains with multi-enzyme activities tailored for efficient and 
targeted dye degradation [18,19]. Together, these technological advances provide a strong foundation 
for bridging the gap between laboratory research and real-world industrial applications. 

Table 4. Technological approaches for bacterial dye degradation 

Approach Advantages Limitations References 

Immobilized cells 
Stability, reuse, 

toxicity resistance 
Mass transfer 

issues, carrier costs 
[3,12] 

Biofilm reactors 
Stress tolerance, 

enzyme secretion, 
synergistic consortia 

Risk of biofilm 
clogging, aeration 

control needed 
[2,19] 

Nanobiotechnolo
gy 

Accelerated 
degradation, 
synergistic 

photocatalysis 

Toxicity, recovery 
costs 

[41] 

Omics 
approaches 

Identify degradative 
genes, pathways 

High cost, 
bioinformatics 
requirement 

[10,16] 

Synthetic biology 
Recombinant strains, 

multi-enzyme 
pathways 

Biosafety, regulatory 
barriers 

[18,19] 

 

 

6. Case Studies of Bacterial Dye Degradation 

Both laboratory-scale and pilot-scale studies conducted worldwide highlight the remarkable 
versatility of bacteria in degrading a wide range of dyes under diverse environmental conditions [42]. 

6.1 Laboratory Studies 
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Controlled laboratory experiments have provided valuable insights into the efficiency of individual 
strains and consortia in dye degradation. For instance, Pseudomonas putida achieved nearly 90% 
removal of Reactive Black 5 within 48 hours under microaerophilic conditions [43]. Similarly, 
Bacillus subtilis demonstrated 95% degradation of Malachite Green at neutral pH (7.0) and an 
optimum temperature of 35 °C [44]. Mixed bacterial systems have shown even greater efficiency, as 
illustrated by a consortium of Enterobacter and Klebsiella that degraded Congo Red with 98% 
efficiency, indicating the advantages of synergistic microbial interactions [45]. 

Table 5. Technological approaches for bacterial dye degradation 

Bacterial/ 
Consortium 

Dye 

Degraded 

Efficiency/ 

Conditions 
Ref. 

Pseudomonas 
putida 

Reactive Black 5 
90% in 48 h 

(microaerophilic) 
[43] 

Bacillus subtilis Malachite Green 
95% removal at pH 7, 

35 °C 
[44] 

Enterobacter + 
Klebsiella (cons.) 

Congo Red 
98% decolorization in 

batch 
[45] 

Bacterial consortium 
(India) 

Mixed azo/reactive 
dyes 

>85% removal in pilot-
scale biofilm reactor 

[46] 

Pseudomonas 
stutzeri 

(immobilized) 
Anthraquinone dyes 

80–90% removal over 
multiple cycles (China) 

[47] 

Halotolerant 
consortium (Egypt) 

Reactive + Disperse 
dyes 

92% removal in saline 
wastewater 

[48] 

Xenophilus 
azovorans 

Sulfonated azo dyes 
Complete mineralization 

(Switzerland) 
[49] 

 

6.2 Pilot-Scale Studies 

Pilot-scale applications provide a bridge between laboratory results and industrial implementation. 
In Tiruppur, India, a Moving Bed Biofilm Reactor (MBBR) successfully achieved more than 85% 
decolorization of actual textile effluents [46]. In China, immobilized Pseudomonas stutzeri systems 
effectively treated anthraquinone dyes over multiple operational cycles, demonstrating stability and 
reusability [47]. Similarly, in Egypt, halotolerant bacterial consortia efficiently degraded reactive 
and disperse dyes under saline wastewater conditions, underscoring the adaptability of extremophilic 
microbes to challenging effluent compositions [48]. 

6.3 International Reports 

Beyond Asia and Africa, international studies have further confirmed the global potential of bacterial 
bioremediation. In Switzerland, Xenophilus azovorans successfully mineralized sulfonated azo dyes 
[49], while in Brazil, Rhodococcus erythropolis was reported to degrade anthraquinone dyes 
effectively [50]. In the United States, a bacterial consortium completely removed Remazol Brilliant 
Blue R along with its toxic aromatic amine byproducts, highlighting the potential of multi-strain 
systems for complete mineralization [51]. 

7. Challenges and Limitations 
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Despite numerous laboratory and pilot-scale successes, several challenges continue to restrict the 
large-scale industrial adoption of bacterial dye bioremediation [52–55]. One major issue is the 
formation of toxic intermediates, particularly aromatic amines generated during azo dye cleavage, 
which are often mutagenic and carcinogenic. Achieving complete mineralization of these 
intermediates usually re-quires integrated anaerobic–aerobic treatment steps [56,57]. Another 
limitation arises during scale-up, as laboratory optimized systems often fail when exposed to highly 
variable effluent conditions such as fluctuating pH, elevated salinity, and the presence of heavy 
metals. Moreover, continuous flow bioreactors frequently suffer from the washout of free bacterial 
cells, reducing process efficiency [58–60]. The instability of microbial communities in mixed 
consortia poses an additional barrier, since interspecies competition may reduce overall degradation 
efficiency, although synthetic consortia designed with complementary metabolic pathways offer 
better stability and resilience [61,62]. Eco-nomic factors also remain a concern, as the requirement 
for carbon and nitrogen supplementation or the use of im-mobilization carriers increases operational 
costs [63,64]. Finally, biosafety concerns associated with genetically engineered strains pose 
regulatory challenges, as they carry potential risks of horizontal gene transfer and unintended 
ecological impacts, necessitating strict monitoring and containment strategies [65].  

Table 6. Challenges and possible solutions in bacterial dye bioremediation 

Challenge Description Possible Solutions Ref. 

Toxic 
intermediates 

Aromatic amines 
toxic/mutagenic 

Sequential anaerobic–
aerobic; engineered 

consortia 
[56,57] 

Scale-up issues 
Poor stability in 

industrial effluents 
Immobilized cells; pilot 

optimization 
[58,60] 

Microbial 
competition 

Non-degraders 
dominate consortia 

Selective enrichment; 
synthetic consortia 

[61,62] 

Cost of 
supplementation 

Glucose, yeast extract, 
carriers costly 

Low-cost substrates 
(molasses, agri-waste) 

[63,64] 

Heavy 
metals/salinity 

stress 

Toxicity of Cr, Pb, 
Na₂SO₄, etc. 

Use halotolerant, metal-
resistant bacteria 

[59] 

GMO biosafety 
Risk of gene transfer, 

ecological harm 
Kill-switch circuits, 

contained bioreactors 
[65] 

 

8. Future Prospects 

Emerging technologies and interdisciplinary approaches are expected to shape the next generation 
of bacterial dye bioremediation. Omics-guided strain discovery, particularly through metagenomics, 
enables the identification of novel and unculturable microorganisms with potent dye-degrading 
capabilities [66,67]. Advances in synthetic biology, such as CRISPR-based engineering, allow the 
construction of bacterial strains equipped with multi-enzyme systems tailored for efficient and 
targeted dye degradation [68,69]. Nanobiotechnology offers another promising avenue, where nano-
bio hybrid systems enhance electron transfer and provide greater stability, thereby accelerating dye 
removal processes [70–72]. In addition, artificial intelligence tools, including machine learning 
models, are increasingly being applied to predict degradation kinetics and optimize reactor design 
[73]. From a sustainability perspective, integrating dye bioremediation into the circular bioeconomy 
could enable the conversion of textile effluents into value-added products such as pigments, 
bioenergy, and bio-plastics [74,75]. Finally, policy integration, involving stricter environmental 
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regulations, industry collaborations, and public–private partnerships, will be essential for large-scale 
implementation and long-term success [76,77]. 

9. Conclusion 

Bacterial dye bioremediation represents a sustainable and eco-friendly alternative to conventional 
chemical treatments. Diverse bacterial genera, including Pseudomonas, Bacillus, Enterobacter, and 
Acinetobacter, have been shown to effectively degrade synthetic dyes through enzymatic 
mechanisms involving azoreductases, laccases, and peroxidases, complemented by passive strategies 
such as biosorption and bioaccumulation. Technological advances, including immobilized cells, 
biofilm-based reactors, nanobiotechnology, and omics-driven approaches, have further improved 
degradation efficiency under real effluent conditions. Case studies from laboratory and pilot-scale 
experiments across different regions highlight the practical feasibility of these methods. 
Nevertheless, significant challenges remain, particularly in achieving complete mineralization of 
toxic intermediates, stabilizing microbial communities, reducing economic costs, and addressing 
biosafety concerns associated with genetically engineered strains. Looking ahead, the integration of 
omics, artificial intelligence, nanotechnology, and circular economy principles has the potential to 
transform bacterial dye bioremediation into a scalable, cost-effective, and mainstream industrial 
solution, thereby contributing to ecosystem protection and improved human health. 
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