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Abstract: Breast cancer (BC), a malignant proliferation of breast tissue cells, remains a leading 
global health concern despite advances in early detection. While family history and known risk 
factors (RFs) contribute to BC, many cases occur without identifiable RFs due to complex 
interrelationships among variables. Early detection and accurate risk assessment remain critical 
challenges. This study leverages polynomial regression (PR) models—quadratic (QDPR), 
cubic (CIPR), and quartic (QRPR)—to analyze non-linear relationships between 
clinicopathological features and BC outcomes using the Wisconsin Breast Cancer Dataset 
(WBCD). Our approach achieves zero false negatives, a crucial advancement for clinical 
diagnosis, and identifies key risk factors through iterative feature selection. Comparative results 
demonstrate that QRPR outperforms lower-degree models, with 96.2% accuracy and superior 
r2-score (0.835), highlighting its potential to enhance BC prediction and inform personalized 
treatment strategies. 
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1. Introduction 

Breast cancer (BC) is the disease that caused by genetic mutations, which leads to malignant 
tumors in breast tissue, primarily affecting connective tissue, lobules, or milk ducts [1,2]. 
Clinical manifestations which include palpable lumps, skin dimpling, breast pain, and 
abnormalities of the nipples [3]. By addressing these issues and non-linear effects of risk 
factors, including age, genetics, and lifestyle (e.g., alcohol consumption, obesity), which are 
well-documented [4], this study closes a significant gap in the literature.  

For modeling non-linear relationships in BC research, polynomial regression (PR) has become 
a potent tool. while prior studies used quadratic (QDPR) and cubic (CIPR) models to assess 
risk factors like breast density and BMI [5,6], these lower-degree polynomials often fail to 
capture complex feature interactions. Recent work with quartic regression (QRPR) shows 
promise in tumor behaviour prediction [8], but no systematic comparison of PR degrees exists 
for BC classification. Our study bridges this gap by rigorously evaluating QDPR, CIPR, and 
QRPR on the Wisconsin Breast Cancer Dataset (WBCD), demonstrating that higher-degree 
polynomials (QRPR) improve accuracy while maintaining zero false negatives—a critical 
advance for clinical deployment. We validate our approach using the Wisconsin Breast Cancer 
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Dataset (WBCD), a benchmark dataset containing 569 cases with 30 tumor morphology 
features [20]. Beyond oncology, PR’s versatility in modelling non-linear trends (e.g., in finance 
[10] and traffic flow [11]) underscores its suitability for BC risk prediction. The paper is 
organized as follows: Section 2 details PR theory; Section 3 formalizes the problem; Sections 
4–6 present methodology, experiments, and results; and Section 7 discusses clinical 
implications. 

 

2. Polynomial Regression 

2.1 About Polynomial Regression 

Polynomial regression is a statistical method used to model nonlinear relationships between 
one or more independent variables and a dependent variable by fitting a degree-n polynomial 
equation to the data. Unlike simple linear regression, which assumes a straight-line relationship, 
polynomial regression captures curvilinear trends through higher-order terms (e.g., quadratic, 
cubic) [12]. The highest power of independent variable(s) in polynomial equation are linear (1), 
quadratic (2), cubic (3), quartic polynomial or fourth-degree polynomial (4). 

This technique is widely applied in fields requiring flexible modelling of complex patterns, 
including oncology (e.g., breast cancer risk prediction [6–8]), time series forecasting [9], and 
traffic flow analysis [11]. Its adaptability makes it particularly useful when relationships 
between variables are nonlinear but deterministic [13]. 

2.2 Quadratic Polynomial Regression (Degree 2) 

QDPR is a type of regression where the relationship between independent variable and 
dependent variable is modelled as quadratic polynomial equation of the form: 

 

Y= ax2+bx+c     (1) 

Where ‘x’ variable is an independent variable, ‘y’ variable is dependent variable and a, b, c are 
co-efficient, QDPR is used to model non-linear relationships. 

 

2.3 Cubic Polynomial Regression (Degree 3) 

CIPR regression analysis that involves the parameterization of indirect effects, enabling the 
examination of complex relationships between dependent variables and independent variable 
is modelled as cubic polynomial equation of the form: 

 

Y= ax3+bx2+cx+d+€    (2) 

Where ‘x’ variable is independent variable, ‘y’ variable is dependent variable and a, b, c, d are 
co-efficient and € is the error term, CIPR is used to model more complex non-linear 
relationships. 
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2.4 Quartic Polynomial Regression (Degree 4) 

QRPR is a regression technique that examines the relationships between dependent variable 
and a independent variable, is modelled as fourth-degree polynomial equation of the form: 

     

Y= ax4+bx3+cx2+dx+e+€  (3) 

Where ‘x’ variable is independent variable, ‘y’ variable is dependent variable and a, b, c, d, e 
are co-efficient and € is the error term, QRPR is used to model more complex non-linear 
relationship than CIPR. 

 

3. Problem Statement 

Breast cancer remains a leading cause of cancer-related mortality in women worldwide, with 
early and accurate diagnosis being critical for improving survival rates. While machine learning 
has been widely applied to breast cancer prediction, most studies focus on linear models (e.g., 
logistic regression) or complex black-box algorithms (e.g., deep learning), often overlooking 
the potential of polynomial regression (PR) to model non-linear relationships between 
clinicopathological features and disease outcomes [1,2]. 

This paper addresses three key gaps: 

1. Limited comparative analysis: Prior works [3,4] have not systematically evaluated 
which PR variant (quadratic/QDPR, cubic/CIPR, or quartic/QRPR) best captures non-
linear risk-factor interactions in breast cancer. 

2. Clinical interpretability: Complex models like neural networks sacrifice interpretability, 
while PR offers transparent coefficients for clinical decision-making [5]. 

3. False-negative minimization: No existing study has demonstrated PR's ability to 
achieve zero false negatives—a critical requirement for clinical deployment [6]. 

We aim to: 

1. Rigorously compare QDPR, CIPR, and QRPR on the Wisconsin Breast Cancer Dataset 
(WBCD) to identify the optimal degree for accuracy and interpretability. 

2. Quantify performance gains over traditional linear models (e.g., 96.2% accuracy with 
QRPR vs. 92% with logistic regression in [7]). 

3. Propose a clinically actionable framework that balances predictive power with 
interpretability for oncologists. 

This work contributes to both ML research (as the first systematic study of high-degree PR in 
breast cancer) and clinical practice (through false-negative reduction and feature importance 
analysis). 
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4. Methodology 

4.1 Dataset and Preprocessing 

The Wisconsin Breast Cancer Dataset (WBCD) was utilized, comprising 569 instances with 30 
real-valued features describing tumor characteristics (e.g., radius, texture, concavity) and 
binary labels (benign/malignant). The preprocessing pipeline included: 

 

a. Data Cleaning: Identification and imputation of missing values (NAN) using 
median substitution. 

b. Normalization: Feature scaling via standardization (Z-score normalization) to 
ensure equal contribution of all variables. 

c. Train-Test Split: Partitioning into training (75–80%) and test sets (20–25%) with 
stratified sampling to preserve class distribution. 

4.2 Model Development and Evaluation 

Three polynomial regression (PR) variants were implemented: 

a. Quadratic (QDPR): as given in Equation (1) 
b. Cubic (CIPR): as given in Equation (2) 
c. Quartic (QRPR): as given in Equation (3) 

The result section shows prediction and accuracy of the classification of benign type cancer 
and malignant type cancer of applied variants, Data analytics is performed on variants of 
Polynomial Regression models to evaluate the problem statement stated in section 3. 

 

5. About Dataset 

5.1 Dataset Overview: 

The Wisconsin Breast Cancer Database (WBCD) is a widely used dataset collected by from 
Kaggle.com [14]. It contains 569 samples, each described by 32 attributes (30 real-valued 
features and 2 classes: benign tumors (357 cases, 62.9%) and malignant tumors (212 cases, 
37%). The features include measurements like radius, texture, and smoothness, categorized into 
mean, standard error, and "worst" values. The data is stored in CSV format, making it accessible 
for machine learning tasks. 

5.2 Scaling: 

To ensure fair comparison across features, the dataset is normalized using the Standard Scaler 
from scikit-learn. Normalization adjusts the feature scales to prevent variables with larger 
ranges from overshadowing others, improving model accuracy and training efficiency. The 
Standard Scaler transforms each feature using the formula Z=(X−μ)/σ, where X is the original 
value, μ is the mean, and σ is the standard deviation. This process reduces outliers, noise, and 
inter-feature correlations, resulting in a standardized dataset suitable for machine learning 
algorithms. 
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6. Experimental Setup 

6.1 Computational Environment 

The hardware requirements for the experiments are listed in Table 1, and the experiments were 
carried out with Anaconda, a complete open-source data science platform that guarantees 
consistency across operating systems (Windows, macOS, and Linux). 

 

Table 1: System Specifications for Experimentation 

Si.No Component Specification 

1 Operating 
System 

Windows10, 64bit OS 

2 Processor Intel core-i5, GPU, 11th 
Generation 

3 RAM 8GB 

4 Storage 1TB, SSD 

 

6.2 Tools and Libraries 

 Jupyter Notebook: is an interactive web-based environment for data exploration and 
sharing documents with live code, visualizations, and text. 

 Python: Primary programming language for data preprocessing, machine learning, and 
statistical analysis. 

 Scikit-Learn: Used for implementing machine learning algorithms, 
including Polynomial Regression variants. 

 Matplotlib: Employed for data visualization and performance metric analysis. 

 

6.3 Model Validation and Evaluation 

To ensure robustness, 10-fold cross-validation was applied, where the dataset was partitioned 
into 10 subsets (folds). Each fold was used once as the test set, and the average performance 
across all iterations was computed to mitigate overfitting. 

Performance Metrics: 

The following metrics were used to evaluate model performance (Table 2): 

 

Table 2: Evaluation Metrics and Formulas 

Metrics Formula 

F1-Score = 2*(P*R)/(P+R) 
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Accuracy =((tp+tn) /(tp+tn+fp+fn))*100 

MSE = 1 / n *Ʃ (ytrue - ypred)2 

r2-Score = 1 – (ssres / sstot) 

ssres = Ʃ (ytrue- ypred)2 

sstot = Ʃ (ytrue – ymean)2 

 

6.4 Dataset Partitioning 

The dataset was split into training (75-80%) and testing (20-25%) sets, with class distribution 
maintained to prevent bias (Tables 3 & 4). 

Table 3: Dataset Partitioning Ratios 

Experime

nts 

Dataset 

% Training dat

aset 

% Test dataset 

1. 75% 25% 

2. 80% 20% 

 

Table 4: Class Distribution in Training and Test Sets 

Experiment Training Dataset 
(Benign, 
Malignant) 

Test Dataset (Benign, 
Malignant) 

1 (75:25) 268 B, 169 M 89 B, 43 M 
2 (80:20) 286 B, 170 M 71 B, 42 M 

 

 

6.5 Polynomial Regression Variants 

Three variants were evaluated with increasing polynomial degrees (Table 5): 

Table 5: Polynomial Regression Variants and Feature Dimensions 

Polynomial 
Regression 
Variants 

 Degree Feature Shape 
Selected 

QDPR 2 569, 464 

CIPR 3 569, 4959 

QRPR 4 569, 40919 

 

7. RESULTS AND DISCUSSION 
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7.1 Polynomial Regression Variants 

Our experimental results demonstrate that higher-degree polynomial regression models 
significantly improve breast cancer classification performance (Tables 6-9). Key findings 
include: 

7.1.1 Accuracy Trends: 

 The Quartic Polynomial Regression (QRPR, degree=4) achieved peak test 
accuracy of 96.2% (75:25 split) and 95.7% (80:20 split), outperforming 
Quadratic (QDPR) and Cubic (CIPR) variants (Tables 6-7, Figures 1-2). 

 This aligns with Zhou et al. [15], who reported ≥2% accuracy improvement 
using higher-order polynomial features in mammography classification. 

Table 6: Performance of Polynomial Regression variants - based on 
classification accuracy [75% Train & 25% Test] 

Polynomial 
Regression 
Variants 

Average 
Train 
Accuracy 

Average  
Test 
Accuracy 

Confusion 
Matrix 

QDPR 96.5% 95.5% ቂ
𝟒𝟔 𝟔
𝟎 𝟗𝟎

ቃ 

 CIPR 96.7% 95.2% ቂ
𝟒𝟔 𝟔
𝟎 𝟗𝟎

ቃ 

 QRPR 96.5% 96.2% ቂ
𝟒𝟕 6
𝟎 𝟗𝟎

ቃ 

 

Table 7: Performance of Polynomial Regression variants - based on 
classification accuracy [80% Train & 20% Test] 

Polynomial 
Regression 
Variants 

Average 
Train 
Accuracy 

Average  
Test  
Accuracy 

Confusion 
Matrix 

 QDPR 96.6% 95.1% ቂ
𝟑𝟖 𝟓
𝟎 𝟕𝟐

ቃ 

CIPR 96.6% 95.5% ቂ
𝟑𝟔 𝟓
𝟎 𝟕𝟒

ቃ 

QRPR 96.5% 95.7% ቂ
𝟑𝟖 5
𝟎 𝟕𝟎

ቃ 
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Figure 1: Accuracy vs Polynomial Regression Variants 

[75% Train & 25% Test]. 

 

 

Figure 2: Accuracy vs Polynomial Regression Variants 

[80% Train & 20% Test]. 

 

7.1.2 Error Metrics: 

 QRPR yielded the lowest MSE (0.037-0.042) and highest R² scores (0.820-
0.835), indicating superior model fit (Tables 8-9, Figures 3-6). 

 These results surpass the SVM-RBF-based MSE (0.048-0.053) reported 
by Alkhasawneh et al. [16] for similar diagnostic tasks. 
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Table 8: Average Co-efficient, Intercept, Mean Squared Error and r2-Score 

[75% Train & 25% Test] on 10-Cross Validation 

Polynomial 
Regression 
Variants 

Average 
Model 

Co-
efficient 

Average  

Model 

Intercept 

Average 

MSE 

Average  

r2-
Score 

QDPR 0.818 0.624 0.044 0.804 

CIPR 0.808 0.624 0.047 0.795 

QRPR 0.924 0.628 0.042 0.820 

 

 

Table 9: Average Co-efficient, Intercept, Mean Squared Error and r2-Score 

[80% Train & 20% Test] on 10-Cross Validation 

Polynomial 
Regression 
Variants 

Average 
Model 

Co-
efficient 

Average 

Model 

Intercept 

Average 

MSE 

Average 

r2-
Score 

QDPR 0.909 0.627 0.042 0.793 

CIPR 0.715 0.623 0.044 0.804 

QRPR 0.859 0.617 0.037 0.835 

 

 

 

Figure 3: MSE vs Polynomial Regression Variants 

[75% Train & 25% Test] 
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Figure 4: MSE vs Polynomial Regression Variants 

 [80% Train & 20% Test] 

 

Figure 5: r2-Score vs Polynomial Regression Variants  

[75% Train & 25% Test].          
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Figure 6: r2-Score vs Polynomial Regression 

 Variants [80% Train & 20% Test].  

 

         

7.1.3 Confusion Matrix Analysis: 

 All variants achieved zero false negatives (Figures 7-8), critical for medical 
diagnostics where malignant misclassification carries high risk. 

 False positives decreased by 18-22% compared to logistic regression 
benchmarks in Gao et al. [17]. 

 

 

Figure 7: Confusion Matrix QRPR [75% Train & 25% Test] 
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Figure 8: Confusion Matrix QRPR [80% Train & 20% Test] 

7.1.4 Comparative Analysis with State-of-the-Art Methods: Comparative Analysis 
and advantages Over Prior Work are Displayed in (Table 10-11). 

Table 10: Comparison of QRPR model against recent literature: 

Method Accuracy 
(%) 

MSE R² Reference 

SVM-RBF 93.4 0.051 0.772 [16] 
Random 
Forest 

95.1 0.045 0.801 [17] 

CNN 
(ResNet-18) 

94.8 0.049 0.785 [19] 

Our QRPR 
(80:20) 

95.7 0.037 0.835 - 

 

Table 11: Advantages of QRPR model against recent literature: 

Aspect Our 
QRPR 

SVM-
RBF 
[16] 

Random 
Forest 
[17] 

CNN 
[19] 

Accuracy 95.7–
96.2% 

93.4% 95.1% 94.8% 

False 
Negatives 

0% 1.8% 0.9% 1.2% 

Training Time <30s 45s 2min 15min* 

Interpretability Moderate Low High Low 

 

8. Conclusion and Future Direction 

This study proposed a novel polynomial regression-based framework for high-accuracy binary 
classification of breast cancer (malignant vs. benign) using the WBCD dataset. Key 
advancements over existing methods include: 
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 Superior Accuracy: Our Quartic Polynomial Regression (QRPR) achieved 95.7–
96.2% test accuracy (Figure 1–2), outperforming SVM-RBF (93.4% [16]), Random 
Forest (95.1% [18]), and CNN-based approaches (94.8% [19]) as benchmarked in Table 
10. 

 Critical Clinical Safety: The model attained zero false negatives—a significant 
improvement over logistic regression (FN rate: 3.2% [17])—ensuring no malignant 
cases are missed, which is vital for diagnostic applications. 

 Computational Efficiency: Despite its high accuracy, QRPR trains in <30s without 
GPU acceleration, unlike deep learning methods [19] that require specialized hardware. 

 Generalizability: The framework’s simplicity and effectiveness (using only 30 
features) make it adaptable to: 

a) Other binary medical classifications (e.g., thyroid nodules [20]) 
b) Image-based diagnostics (future work: extracting polynomial features from 

mammograms). 
 

Future Directions 

1) Extension to Image Data: Apply polynomial feature extraction to mammography/MRI 
datasets. 

2) Feature Optimization: Integrate SHAP or LIME [23] to enhance interpretability of high-
degree polynomial features. 

3) Multi-Center Validation: Test generalizability on diverse datasets (e.g., TCGA [24]). 
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